SciELO - Scientific Electronic Library Online

 
vol.5 número2Nível de atividade física, condições de saúde e características sócio-demográficas de mulheres idosas brasileirasO efeito do treinamento contra resistência na síndrome da dor lombar índice de autoresíndice de assuntosPesquisa de artigos
Home Pagelista alfabética de periódicos  

Serviços Personalizados

Journal

Artigo

Indicadores

Links relacionados

  • Não possue artigos similaresSimilares em SciELO

Compartilhar


Revista Portuguesa de Ciências do Desporto

versão impressa ISSN 1645-0523

Rev. Port. Cien. Desp. v.5 n.2 Porto maio 2005

 

Co-activação dos músculos flexores e extensores da articulação do joelho em condições isocinéticas.

 

Rui S. Gonçalves1*

J. Páscoa Pinheiro2

 

[1] Escola Superior de Tecnologia da Saúde de Coimbra, Portugal.

[2] Universidade de Coimbra, Faculdade de Medicina e Faculdade de Ciências do Desporto e Educação Física, Portugal.

 

RESUMO

A co-activação dos músculos flexores e extensores do sistema articular do joelho tem sido amplamente examinada com recurso à electromiografia de superfície. Esta revisão tem com objectivo apresentar achados relativos à contribuição da actividade electromiográfica (EMG) antagonista para a acção motora do complexo do joelho, em condições isocinéticas. Os factores posição angular, tipo de acção muscular e velocidade angular influenciam os níveis de actividade EMG antagonista. Em condições isocinéticas, a activação antagonista contribui para a restrição do momento articular resultante e para a manutenção da estabilidade articular.

Palavras-chave: co-activação, joelho, electromiografia de superfície, dinamometria  isocinética.

 

ABSTRACT

Co-activation of the knee joint flexors and extensors muscles in isokinetics conditions.

The co-activation of the knee flexors and extensors muscles has been largely examined resorting to surface electromyography. The aim of this review is to present findings related to the contribution of the antagonist electromyographic (EMG) activity to the motor’s actions of the knee joint complex in isokinetics conditions. The factors angular position, type of muscle action and angular velocity influence the antagonist EMG activity levels. In isokinetics conditions the antagonist activation contributes to the restriction of the resultant joint moment and the maintenance of the joint stability.

Key Words: co-activation, knee, surface electromyography, isokinetic dynamometry.

 

 

Texto completo disponível apenas em PDF.

Full text only in PDF format.

 

 

REFERÊNCIAS BIBLIOGRÁFICAS

1. Herzog W, Longino D, Clark A (2003). The role of muscles in joint adaptation and degeneration. Langenbecks Arch Surg 388(5):305-15.        [ Links ]

2. Fadale PD, Hulstyn MJ (1997). Common athletic knee injuries. Clin Sports Med 16(3):479-99.        [ Links ]

3. Cailliet R (1983). Knee pain and disability. 2nd ed. Philadelphia: FA Davis.        [ Links ]

4. Amarantini D, Martin L (in press). A method to combine numerical optimization and EMG data for the estimation of joint moments under dynamic conditions. Journal of Biomechanics, Corrected Proof.        [ Links ]

5. Baltzopoulos V (1995). Muscular and tibiofemoral joint forces during isokinetic concentric knee extension. Clin Biomech (Bristol, Avon) 10(4):208-214.        [ Links ]

6. Chow JW (1999). Knee joint forces during isokinetic knee extensions: a case study. Clin Biomech (Bristol, Avon) 14(5):329-38.        [ Links ]

7. Lloyd DG, Besier TF (2003). An EMG-driven musculoskeletal model to estimate muscle forces and knee joint moments in vivo. J Biomech 36(6):765-76.        [ Links ]

8. Kaufman KR, An KN, Litchy WJ, Morrey BF, Chao EY (1991). Dynamic joint forces during knee isokinetic exercise. Am J Sports Med 19(3):305-16.        [ Links ]

9. Kellis E, Baltzopoulos V (1999). The effects of the antagonist muscle force on intersegmental loading during isokinetic efforts of the knee extensors. J Biomech 32(1):19-25.        [ Links ]

10. Kellis E (2001). Tibiofemoral joint forces during maximal isokinetic eccentric and concentric efforts of the knee flexors. Clin Biomech (Bristol, Avon) 16(3):229-36.        [ Links ]

11. Nisell R, Ericson MO, Nemeth G, Ekholm J (1989). Tibiofemoral joint forces during isokinetic knee extension. Am J Sports Med 17(1):49-54.        [ Links ]

12. Wei SH (2000). Dynamic joint and muscle forces during knee isokinetic exercise. Proc Natl Sci Counc Repub China B 24(4):161-8.        [ Links ]

13. Psek JA, Cafarelli E (1993). Behavior of coactive muscles during fatigue. J Appl Physiol 74(1):170-5.        [ Links ]

14. Aagaard P, Simonsen EB, Andersen JL, Magnusson SP, Bojsen-Moller F, Dyhre-Poulsen P (2000). Antagonist muscle coactivation during isokinetic knee extension. Scand J Med Sci Sports 10(2):58-67.        [ Links ]

15. Kellis E, Unnithan VB (1999). Co-activation of vastus lateralis and biceps femoris muscles in pubertal children and adults. Eur J Appl Physiol Occup Physiol 79(6):504-11.        [ Links ]

16. Kellis E (1998). Quantification of quadriceps and hamstring antagonist activity. Sports Med 25(1):37-62.        [ Links ]

17. Kellis E, Baltzopoulos V (1997). The effects of antagonist moment on the resultant knee joint moment during isokinetic testing of the knee extensors. Eur J Appl Physiol Occup Physiol 76(3):253-9.        [ Links ]

18. Amiridis IG, Martin A, Morlon B, Martin L, Cometti G, Pousson M, et al (1996). Co-activation and tension-regulating phenomena during isokinetic knee extension in sedentary and highly skilled humans. Eur J Appl Physiol Occup Physiol 73(1-2):149-56.        [ Links ]

19. Kellis E, Baltzopoulos V (1996). The effects of normalization method on antagonist activity during concentric and eccentric isokinetic knee extension and flexion. J Electromyogr Kinesiol 6(4):235-45.        [ Links ]

20. Osternig LR, Caster BL, James CR (1995). Contralateral hamstring (biceps femoris) coactivation patterns and anterior cruciate ligament dysfunction. Med Sci Sports Exerc 27(6):805-8.        [ Links ]

21. Oberg B, Moller M, Gillquist J, Ekstrand J (1986). Isokinetic torque levels for knee extensors and knee flexors in soccer players. Int J Sports Med 7(1):50-3.        [ Links ]

22. Snow CJ, Cooper J, Quanbury AO, Anderson JE (1993). Antagonist cocontraction of knee flexors during constant velocity muscle shortening and lengthening. J Electromyogr Kinesiol 3(2):78-86.        [ Links ]

23. Snow CJ, Cooper J, Quanbury AO, Anderson JE (1995). Antagonist cocontraction of extensors during constant velocity muscle shortening and lengthening. J Electromyogr Kinesiol 5(3):185-92.        [ Links ]

24. Bobbert MF, Harlaar J (1993). Evaluation of moment-angle curves in isokinetic knee extension. Med Sci Sports Exerc 25(2):251-9.        [ Links ]

25. Grabiner MD, Weiker GG (1993). Anterior cruciate ligament injury and hamstring coactivation. Clin Biomech (Bristol, Avon) 8(4):215-9.        [ Links ]

26. Hagood S, Solomonow M, Baratta R, Zhou BH, D'Ambrosia R (1990). The effect of joint velocity on the contribution of the antagonist musculature to knee stiffness and laxity. Am J Sports Med 18(2):182-7.        [ Links ]

27. Tesch PA, Dudley GA, Duvoisin MR, Hather BM, Harris RT (1990). Force and EMG signal patterns during repeated bouts of concentric or eccentric muscle actions. Acta Physiol Scand 138(3):263-71.        [ Links ]

28. Baratta R, Solomonow M, Zhou BH, Letson D, Chuinard R, D'Ambrosia R (1988). Muscular coactivation. The role of the antagonist musculature in maintaining knee stability. Am J Sports Med 16(2):113-22.        [ Links ]

29. Solomonow M, Baratta R, Zhou BH, Shoji H, Bose W, Beck C, et al (1987). The synergistic action of the anterior cruciate ligament and thigh muscles in maintaining joint stability. Am J Sports Med 15(3):207-13.        [ Links ]

30. Kellis E, Baltzopoulos V (1998). Muscle activation differences between eccentric and concentric isokinetic exercise. Med Sci Sports Exerc 30(11):1616-23.        [ Links ]

31. Kellis E (1999). The effects of fatigue on the resultant joint moment, agonist and antagonist electromyographic activity at different angles during dynamic knee extension efforts. J Electromyogr Kinesiol 9(3):191-9.        [ Links ]

32. Kellis E, Kellis S (2001). Effects of agonist and antagonist muscle fatigue on muscle coactivation around the knee in pubertal boys. J Electromyogr Kinesiol 11(5):307-18.        [ Links ]

33. Kellis E (2003). Antagonist moment of force during maximal knee extension in pubertal boys: effects of quadriceps fatigue. Eur J Appl Physiol 89(3-4):271-80.        [ Links ]

34. Miller JP, Croce RV, Hutchins R (2000). Reciprocal coactivation patterns of the medial and lateral quadriceps and hamstrings during slow, medium and high speed isokinetic movements. J Electromyogr Kinesiol 10(4):233-9.        [ Links ]

35. Weir JP, Keefe DA, Eaton JF, Augustine RT, Tobin DM (1998). Effect of fatigue on hamstring coactivation during isokinetic knee extensions. Eur J Appl Physiol Occup Physiol 78(6):555-9.        [ Links ]

36. Osternig LR, Hamill J, Lander JE, Robertson R (1986). Co-activation of sprinter and distance runner muscles in isokinetic exercise. Med Sci Sports Exerc 18(4):431-5.        [ Links ]

37. Croce RV, Miller JP (2003). The effect of movement velocity and movement pattern on the reciprocal co-activation of the hamstrings. Electromyogr Clin Neurophysiol 43(8):451-8.        [ Links ]

38. Miller JP, Croce RV (2002). Effect of movement velocity and movement pattern on the root mean square and the median frequency of the electromyographic activity of the quadriceps during isokinetic testing. Isokinetics and Exercise Science 10(4):193-8.        [ Links ]

39. Baltzopoulos V, Brodie DA (1989). Isokinetic dynamometry. Applications and limitations. Sports Med 8(2):101-16.        [ Links ]

40. Cabri J (1991). Isokinetic strength aspects of human joints and muscles. Crit Rev Biomed Eng 19(2-3):231-59.        [ Links ]

41. Delitto A (1990). Isokinetic dynamometry. Muscle Nerve 13 Suppl:S53-7.        [ Links ]

42. Kannus P (1994). Isokinetic evaluation of muscular performance: implications for muscle testing and rehabilitation. Int J Sports Med 15 Suppl 1:S11-8.        [ Links ]

43. Kellis E, Baltzopoulos V (1995). Isokinetic eccentric exercise. Sports Med 19(3):202-22.        [ Links ]

44. Aagaard P, Simonsen EB, Andersen JL, Magnusson SP, Halkjaer-Kristensen J, Dyhre-Poulsen P (2000). Neural inhibition during maximal eccentric and concentric quadriceps contraction: effects of resistance training. J Appl Physiol 89(6):2249-57.        [ Links ]

45. Westing SH, Cresswell AG, Thorstensson A (1991). Muscle activation during maximal voluntary eccentric and concentric knee extension. Eur J Appl Physiol Occup Physiol 62(2):104-8.        [ Links ]

46. Brown LE (2000). Isokinetics in human performance. Champaign: Human Kinetics.        [ Links ]

47. Basmajian JV, De Luca CJ (1985). Muscles alive, their functions revealed by electromyography. 5th ed. Baltimore: Williams & Wilkins.        [ Links ]

48. Gonçalves RS, Pinheiro JP (2003). Normalização da actividade electromiográfica antagonista recolhida  no decurso de provas isocinéticas de extensão e de flexão da articulação do joelho. Ludens 17(2):47-50.        [ Links ]

49. Renstrom P, Arms SW, Stanwyck TS, Johnson RJ, Pope MH (1986). Strain within the anterior cruciate ligament during hamstring and quadriceps activity. Am J Sports Med 14(1):83-7.        [ Links ]

50. Yanagawa T, Shelburne K, Serpas F, Pandy M (2002). Effect of hamstrings muscle action on stability of the ACL-deficient knee in isokinetic extension exercise. Clin Biomech (Bristol, Avon) 17(9-10):705-12.        [ Links ]

51. Beynnon BD, Fleming BC (1998). Anterior cruciate ligament strain in-vivo: a review of previous work. J Biomech 31(6):519-25.        [ Links ]

52. Beynnon BD, Fleming BC, Johnson RJ, Nichols CE, Renstrom PA, Pope MH (1995). Anterior cruciate ligament strain behavior during rehabilitation exercises in vivo. Am J Sports Med 23(1):24-34.        [ Links ]

53. More RC, Karras BT, Neiman R, Fritschy D, Woo SL, Daniel DM (1993). Hamstrings--an anterior cruciate ligament protagonist. An in vitro study. Am J Sports Med 21(2):231-7.        [ Links ]

54. Hirokawa S, Solomonow M, Lu Y, Lou ZP, D'Ambrosia R (1992). Anterior-posterior and rotational displacement of the tibia elicited by quadriceps contraction. Am J Sports Med 20(3):299-306.        [ Links ]

55. Tsuda E, Okamura Y, Otsuka H, Komatsu T, Tokuya S (2001). Direct evidence of the anterior cruciate ligament-hamstring reflex arc in humans. Am J Sports Med 29(1):83-7.        [ Links ]

56. Dyhre-Poulsen P, Krogsgaard MR (2000). Muscular reflexes elicited by electrical stimulation of the anterior cruciate ligament in humans. J Appl Physiol 89(6):2191-5.        [ Links ]

57. Chu D, LeBlanc R, D'Ambrosia P, D'Ambrosia R, Baratta RV, Solomonow M (2003). Neuromuscular disorder in response to anterior cruciate ligament creep. Clin Biomech (Bristol, Avon) 18(3):222-30.        [ Links ]

58. Williams GN, Barrance PJ, Snyder-Mackler L, Axe MJ, Buchanan TS (2003). Specificity of muscle action after anterior cruciate ligament injury. J Orthop Res 21(6):1131-7.        [ Links ]

59. Doorenbosch CA, Harlaar J (2003). A clinically applicable EMG-force model to quantify active stabilization of the knee after a lesion of the anterior cruciate ligament. Clin Biomech (Bristol, Avon) 18(2):142-9.        [ Links ]

60. De Luca CJ, Mambrito B (1987). Voluntary control of motor units in human antagonist muscles: coactivation and reciprocal activation. J Neurophysiol 58(3):525-42.        [ Links ]

 

 

CORRESPONDÊNCIA

*Rui Soles Gonçalves

Curso de Fisioterapia

Escola Superior de Tecnologia da Saúde de Coimbra

Rua 5 de Outubro, S. Martinho do Bispo,  Apartado 7006

3040-162 Coimbra

PORTUGAL

ruigoncalves@estescoimbra.pt