SciELO - Scientific Electronic Library Online

 
vol.15 issue2Pediatric parapneumonic pleural effusions: Experience in a university central hospitalTuberculin skin test. How to optimise? author indexsubject indexarticles search
Home Pagealphabetic serial listing  

Services on Demand

Journal

Article

Indicators

Related links

  • Have no similar articlesSimilars in SciELO

Share


Revista Portuguesa de Pneumologia

Print version ISSN 0873-2159

Rev Port Pneumol vol.15 no.2 Lisboa Mar. 2009

 

ROBALO CORDEIRO AER/GSK 2008 AWARD / PRÉMIO ROBALO CORDEIRO AER/GSK 2008

 

Nanoradioliposomes molecularly modulated to study the lung deep lymphatic drainage

 

Maria Filomena Rabaça Roque Botelho 1

Maria Alcide Tavares Marques 2

Célia Maria Freitas Gomes 1

Augusto Marques Ferreira da Silva 3

Vasco António Andrade Figueiredo Bairos 4

Manuel Amaro de Matos Santos Rosa 5

Antero Pena Abrunhosa 1

João José Pedroso de Lima 1

 

 

Abstract

Lung deep lymphatic drainage (LDLD) plays an important role in the removal of foreign materials from lungs being alveolar macrophages the first line of phagocytic defence with high affinity for pathogenic microorganisms. Bacillus subtilis is a well-known genome-decoded saprophyte of the human respiratory tract used in research and in the biotechnology industry.

Lung deep lymphatic chains (LDLC) constitute one of the first sites of lung tumours’ dissemination. In this work we intended to develop and validate a non-invasive method for assessing LDLC by nanoradioliposomes aerosolised modulated on the Bacillus subtilis spore wall. The final goal was to produce a nanoradioliposome formulation that can mimics the dynamics of preferential removal of spores by LDLD and present the ideal properties as a tracer for molecular imaging studies.

Seven different liposomal formulations were tested, and the formulation-F demonstrated physicochemical and radiopharmaceutical properties that make it an ideal candidate as an in vivo probe for molecular imaging studies of the LDLC.

Nanoradioliposomes of the formulation-F after labelling with 99mTc-HMPAO were administered as aerosols to 20 Sus scrofa. Hilar and interpulmonary communications were visualized in first 5 minutes post-inhalation, infradiaphragmatic chains between 10 and 20 minutes, the ganglia of the aortic chain at 20 minutes and those of the renal hilar region at 30 minutes.

Conclusion: the proposed method enables visualization of deep lymphatic lung network and lymph nodes. Besides, this technique involving the modulation of nanoradioliposomes targeting specific organs or tissues may be an important tool for diagnostic or even for therapeutic purposes.

Key-words: Nanoradioliposomes, molecular modulation, lung lymphatic drainage, functional nuclear imaging.

 

 

Nanorradiolipossomas modulados molecularmente para estudar a drenagem linfática pulmonar profunda

 Resumo

A drenagem linfática pulmonar profunda (DLPP) desempenha um papel importante na remoção de materiais estranhos, constituindo os macrófagos alveolares a primeira linha de defesa fagocitária, dada a grande afinidade para microrganismos patogénicos.

Os Bacillus subtilis são saprófitas do tracto respiratório humano com ampla utilização em investigação e em biotecnologia.

As cadeias linfáticas pulmonares profundas (CLPP) constituem um dos primeiros locais de disseminação de tumores pulmonares.

Neste trabalho pretendeu-se desenvolver e validar um método não invasivo para avaliar as CLPP através de nanorradiolipossomas aerosolisados e modulados pela parede do esporo do Bacillus subtilis. O objectivo final foi produzir uma formulação de nanorradiolipossomas capaz de imitar a dinâmica da remoção de esporos pelas CLPP e simultaneamente ter propriedades ideais como traçador para imagiologia molecular.

Testámos sete diferentes formulações lipossómicas, tendo a formulação F demonstrado possuir propriedades fisicoquímicas e radiofarmacêuticas que a tornam o traçador ideal para imagiologia molecular in vivo das CLPP.

Os nanorradiolipossomas da formulação F após marcação com 99mTc-HMPAO foram administrados sob a forma de aerossóis a 20 Sus scrofa. Visualizaram-se comunicações hilares e interpulmonares nos primeiros 5 minutos após a inalação, as cadeias infradiafragmáticas entre os 10 e os 20 minutos, os gânglios da cadeia aórtica aos 20 minutos e os da região hilar renal aos 30 minutos.

Em conclusão, o método proposto visualiza os gânglios linfáticos e a rede linfática pulmonar profunda. A modulação dos nanorradiolipossomas permite que eles atinjam órgãos ou tecidos específicos, conferindo-lhes importantes potencialidades no âmbito do diagnóstico e/ou da terapêutica.

Palavras-chave: Nanorradiolipossomas, modulação molecular, drenagem linfática pulmonar, imagem nuclear funcional

 

 

Full text only available in PDF format.

Texto completo disponível apenas em PDF.

 

 

Bibliography

1. DG Bishop, L Rutberg, B Samuelsson. The chemical composition of the cytoplasmic membrane of Bacillus subtilis. Eur J Biohem 1967;2:448-453.        [ Links ]

2. JAF Op der Kamp, I Redai, LLM van Deenen, Phosholipid composition of Bacillus subtilis. J Bacteriol 1969;99:298-303.

3. DC McPherson, H Kim, M Hahn, R Wang, P Grabowski, P Eichenberger, A Driks1. Characterization of the Bacillus subtilis spore morphogenetic coat Protein CotO J Bacteriol 2005;187:8278–8290.

4. V Leak, VJ Ferrans. Lymphatics and lymphoid tissue, in: RG Crystal, JB West, et al. (Eds.), The Lung: Scientific Foundations, Raven Press Ltd, New York, 1997, pp.779-786.

5. AE Taylor, JW Barnard, SA Barman, WK Adkins, Fluid Balance, in: RG Crystal, JB West, et al. (Eds.). The Lung: Scientific Foundations, Raven Press Ltd, New York, 1997:1147-1161.

6. C Nagaishi, Y Okada. The pulmonary lymphatic system, in: AP Fishman’s Pulmonary Disease and Disorders, Vol.2, JD Dereck, M Navrozov (Eds.) London, McGraw-Hill Inc, 1980:901-908.

7. AP Fishman. Pulmonary edema, in: AP Fishman’s Pulmonary Disease and Disorders, Vol.2, J.D. Dereck, M Navrozov (Eds.) London, McGraw-Hill Inc, 1980: 919-952.

8. JM Lauweryns, JH Baert. Alveolar clearance and the role of the pulmonary lymphatics. Am Rev Respir Dis 1977;115:625-683.

9. T Grant, B Levin. Lymphangiographic visualization of pleural and pulmonary lymphatics in a patient without chylothorax. Radiology 1974;113:49-50.

10. J Liua, Ho-Lun Wong, Moselhyc, B Bowenc, XY Wuc, MR Johnston. Targeting colloidal particulates to thoracic lymph nodes. Lung Cancer 2006;51: 377-386.

11. RS Hanson, JA Peterson, AA Yousten. Unique biochemical events in bacterial sporulation, Annu Rev Microbiol 1970;24:53-90.

12. AI Aronson, P Fitz-James. Structure and morphogenesis of the bacterial spore coat. Bacteriol Ver 1976;40:360-402.

13. JC Parker. Transport and distribution of charged macromolecules in lung. Adv Microcirc 1987;13:150-159.

14. MC Finkelstein, G Weissmann. Enzyme replacement via liposomes. Variations in lipid composition determine liposomal integrity in biological fluids. Biochim Biophys Acta 1979;587:202-216.

15. Gregoriadis, J Senior. The phospholipid component of small unilamellar liposomes controls the rate of clearance of entrapped solutes from the circulation. FEBS Letters 1980;119:43-46.

16. MR Zalustry, MA Noska, PW Gallagher. Properties of multilamellar liposomes containing 99mTcO4-: Effect of distearoylphosphatidylcholine to sphingomyelin ratio. J Nucl Med 1986;13:269-276.

17. R Nayar, MJ Hope, PR Cullis. Generation of large unilamellar vesicles from long-chain saturated phosphatidylcholines by extrusion techniques. Biochim Biophys Acta 1989;986:200-206.

18. C Oussoren, G Storm. Targeting to lymph nodes by subcutaneous administration of liposomes. Inter J Pharma 1998;162:39-44.

19. WT Phillips, R Klipper, B Goins. Novel method of greatly enhanced delivery of liposomes to lymph nodes1. JPET 2000;295:309-313.

20. W Yan, L Huang. Recent advances in liposomebased nanoparticles for antigen delivery. Polymer Reviews 2007;47:329-344.

21. DA Tyrrell, TD Heath, CM Colley, BE Ryman. New aspects of liposomes. Biochim Biophys Acta 1976;457:259-302.

22. C Kirby, J Clarke, G Gregoriadis. Effect of the cholesterol content of small unilamellar liposomes on their stability in vivo and in vitro. Biochem J 1980;186:591-598.

23. MR Mauk, RC Gamble. Preparation of lipid vesicles containing high levels of entrapped radioactive cations. Anal Biochem 1979;94:302-307.

24. P Osborne, VJ Richardson, K Jeysingh, BE Ryman. Radionuclide-labelled liposomes – A new lymph node imaging agent. Int J Nucl Med 1979;6:75-83.

25. WT Phillips, AS Rudolph, B Goins, JH Timmons, R Klipper, R Blumhardt. A simple method for producing technetium-99m-labeled liposome which is stable in vivo. Nucl Med Biol 1992;19:539-547.

26. MR Jacquier-Sarlier, BS Polla, DO Slosman. Oxidoreductive state: the major determinant for cellular retention of technetium-99m-HMPAO. J Nucl Med 1996;37:1413-1416.

27. B Goins, WT Phillips, R Klipper. Blood-pool imaging using technetium-99m-labeled liposomes. J Nucl Med 1996;37:1374-1379.

28. VD Awashi, B Goins, R Klipper, WT Phillips. Dual radiolabeled liposomes: biodistribution studies and localization of focal sites of infection in rats. Nucl Med Biol 1998;25:155-160.

29. RC MacDonald, RI MacDonald, BPM Menco, K Takeshita, NK Subbarao, L -R Hu. Small –volume extrusion apparatus for preparation of large unilamellar vesicles. Biochim Biophys Acta 1991;1061:297-303.

30. F Olson, CA Hunt, FC Szoka, WJ Vail, D Papahadjopoulos. Preparation of liposomes of defined size and distribution by extrusion through polycarbonate membranes. Biochim Biophys Acta 1979;557:9-23.

31. MJ Hope, MB Bally, G Webb, PR Cullis. Production of large unilamellar vesicles by a rapid extrusion procedure: characterization of size distribution, trapped volume and ability to maintain a membrane potential. Biochim Biophys Acta 1985;812:55-65.

32. C Huang. Studies on phosphatidylcholine vesicles. Formation and physical characteristics. Biochemistry 1969;8:344-351.

33. IR McDougall, JK Dunnick, ML Goris, JP Kriss. In vivo distribution of vesicles loads with radiopharmaceuticals: a study of different routes of administration. J Nucl Med 1975;16:488-491.

34. LA Medina, R Klipper, WT Phillips, B Goins. Pharmacokinetics and biodistribution of [111In]-avidin and [99mTc]-biotin-liposomes injected in the pleural space for the targeting of mediastinal nodes. Nucl Med Biol 2004;31:41-51.

35. WT Phillips, R Klipper, B Goins. Use of 99mTclabeled liposomes encapsulating blue dye for identification of the sentinel lymph node. J Nucl Med 2001; 42:446-451.

36. F Ahkong, C Tilcock. Attachment of 99mTc to lipid vesicles containing the lipophilic chelate dipal mitoylphosphatidyl ethanolamine-DTTA. Nucl Med Biol 1992; 19:831-840.

37. LP Kasi, G Lopez-Berestein, K Mehta, M Rosenblum, HJ Glenn, TP Haynie, G Mavligit, EM Hersh. Distribution and pharmacology of intravenous 99mtclabeled multilamellar liposomes in rats and mice. Int J Nucl Med Biol 1984;11: 35-37.

38. B Goins, R Klipper, AS Rudolph, WT Phillips. Use of technetium-99m-liposomes in tumor imaging J Nucl Med 1994;35:1491-1498.

39. SM Saari, MT Vidgren, MO Koskinen, VMH Turjanmaa, JC Waldrep, MN Nieminem. Regional lung deposition and clearance of 99mTc-labeled beclomethasone-DLPC liposomes in mild and severe asthma. Chest 1998;113:1573-1579.

40. P Shurtenberger, H Hauser. Characterization of the size distribution of unilamellar vesicles by gel filtration, quasi-elastic light scattering and electron microscopy. Biochim Biophys Acta 1984;778:470-480.

41. G Perevucnik, P Schurtenberger, H Hauser. Size analysis of biological membrane vesicles by gel filtration, dynamic light scattering and electron microscopy. Biochim Biophys Acta 1985;821:169-173.

42. LD Mayer, MJ Hope, PR Cullis. Vesicles of variable sizes produced by a rapid extrusion procedure. Biochim Biophys Acta 1986;858:161-168.

43. DJ Hnatowich, B Clancy. Investigations of a new, highly negative liposome with improved biodistribution for imaging. J Nucl Med 1980;21:662-669.

44. KMG Taylor, G Taylor, IW Kellaway, J Stevens. The stability of liposomes to nebulization. Int J Pharm 1990;58:57-61.

45. RW Niven, H Schreier. Nebulization of liposome. I. Effects of lipid composition. Pharm Res 1990;7:1127- 1133.

46. KKM Leung, PA Bridges, KMG Taylor. The stability of liposomes to ultrasonic nebulization. Int J Pharm 1996;145:95-102.

47. S Thomas, H Atkins, J McAfee, MD Blaufox, M Fernandez, PT Kirchner, RC Reba. Radiation absorbed dose from tc-99m diethylenetriaminepentaacetic acid (DTPA). J Nucl Med 1984;25:503-505.

48. International Commission of Radiation Protection Publication 30. New York, Pergamon Press, 1988.

49. VJ Caride. Technical and biological considerations on the use of radiolabeled liposomes for diagnostic imaging. Nucl Med Biol 1990;17:35-39.

50. B Goins, R Klipper, AS Rudolph, RO Cliff, R Blumhardt, WT Phillips. Biodistribution and imaging studies of technetium -99m -labeled liposomes in rats with focal infection. J Nucl Med 1993;34:2160-2168.

51. JH Crowe, LM Crowe, JF Carpenter, AS Rudolph, CA Wistrom, BJ Spargo, TJ Anchordoguy. Interactions of sugars with membranes. Biochim Biophys Acta 1988;947:367-384.

52. RP Goodrich, TM Handel, JD Baldeschwieler. Modification of lipid phase behavior with membranebound cryoprotectants. Biochim Biophys Acta 1988; 938:143-154.

53. ONM Mc Callion, KMG Taylor, M Thomas, AJ Taylor. Nebulization of monodisperse latex sphere suspensions in air-jet and ultrasonic nebulizers. Int J Pharm 1996;133:203-214.

54. RF Phalen. Basic morphology and physiology of the respiratory tract, in: Inhalation Studies: Foundations and techniques. CRC Press, Boca Raton, Florida, 1984:51.

 

 

1 Instituto de Biofísica e Biomatemática, Faculdade de Medicina, Universidade de Coimbra, Azinhaga de Santa Comba, Celas, 3000-548 Coimbra, Portugal

2 Departmento de Ciências Pneumológicas e Alergológicas, Hospitais da Universidade de Coimbra, Praceta Mota Pinto, 3000-075 Coimbra, Portugal

3 Departmento de Electrónica e Telecomunicações, Universidade de Aveiro, 3810-193 Aveiro, Portugal

4 Instituto de Histologia e Embriologia, Faculdade de Medicina, Universidade de Coimbra, Rua Larga, 3004-504 Coimbra, Portugal

5 Instituto de Imunologia, Faculdade de Medicina, Universidade de Coimbra, Rua Larga, 3004-504 Coimbra, Portugal

 

 

Correspondência/Correspondence to:

Maria Filomena Botelho

Instituto de Biofísica e Biomatemática

IBILI-Faculdade de Medicina

Azinhaga de Santa Comba, Celas

3000-548 Coimbra

Portugal

Tel: +351 239 480240

FAX: +351 239 480258

Email: filomena@ibili.uc.pt

 

Recebido para publicação/received for publication: 09.01.23

Aceite para publicação/accepted for publication: 09.01.26