SciELO - Scientific Electronic Library Online

 
vol.22 issue3Degradation of a Textile Dye C. I. Direct Red 80 by Electrochemical Processes author indexsubject indexarticles search
Home Pagealphabetic serial listing  

Services on Demand

Journal

Article

Indicators

Related links

  • Have no similar articlesSimilars in SciELO

Share


Portugaliae Electrochimica Acta

Print version ISSN 0872-1904

Port. Electrochim. Acta vol.22 no.3 Coimbra  2004

 

Semiconductor Electrochemistry and Localised Corrosion

 

C.M. Rangel,* M. da Cunha Beloa,b

 

Instituto Nacional de Engenharia e Tecnologia Industrial, Electrochemistry of Materials, DMTP-Paço do Lumiar, 22, 1649-038 Lisboa, Portugal

a Instituto Superior Técnico, Departamento de Engenharia Química, Av. Rovisco Pais, 1049-001 Lisboa, Portugal

bCentre National de la Recherche Scientifique – CECM – 15 Rue Georges Urbain F94407 Vitry-sur-Seine Cedex – France

 

Received 6 January 2004; accepted in revised form 1 August 2004

 

 

Abstract

In the present work, the electronic structure of the passive film formed on austenitic stainless steel of the 304 type and its implications on the initiation of localised corrosion are investigated taking into account concepts developed in semiconductor physics and semiconductor electrochemistry. Capacitance measurements (Mott-Schottky approach), show that the susceptibility of AISI 304 stainless steel to stress corrosion cracking (SCC) in boiling chloride containing aqueous solutions is closely linked to the formation of a chromium rich passive oxide film with p-type semiconductivity. A small polarisation is required to drastically change the electric field at the film-electrolyte interface, as a consequence of the high doping level of the passive film. Initiation of the SCC phenomenon is described as the consequence of localised changes in the semiconductive properties of the passive film.

 

Keywords: stress corrosion cracking, stainless steel, passive films, semiconductive properties.

 

 

Texto completo disponível apenas em PDF.

Full text only in PDF format.

 

 

References

1.      R.W. Staehle, NACE 5- “Stress Corrosion Cracking and Hydrogen Embrittlement of Iron-Based Alloys”, Houston, TX: NACE, 1977.        [ Links ]

2.      P. Engsseth, J.C. Scully, Corros. Sci. 15 (1975) 505.        [ Links ]

3.      T. Kodoma, J.R. Ambrose, Corrosion 33 (1977) 155.        [ Links ]

4.      X.G. Zhang, J. Verrecken, Corrosion 45 (1989) 57.         [ Links ]

5.      H.S. Kwon, E.A. Cho, K.A. Yeom, Corrosion 56 (2000) 32.        [ Links ]

6.      A.D. Paola, F. Di Quarto, C. Sunseri, Corros. Sci. 26 (1986) 935.        [ Links ]

7.     K. Azumi, T. Ohtsuka, N. Sato, J. Electrochem. Soc. 133 (1986) 1326.        [ Links ]

8.      U. Stimming, Electrochim. Acta 31 (1986) 415.        [ Links ]

9.      C.M. Rangel, S. Faty, M. da Cunha Belo, Port. Electrochim. Acta 20 (2002) 119.        [ Links ]

10.      S.R. Morrison, Electrochemistry at Semiconductor and Oxidized Metal Electrodes, Chap. 5, Plenum Press, New York, 1980.        [ Links ]

11.      H. Gerisher, in: P. Delahay (Ed.), Advances in Electrochemistry and Electrochemical Engineering, Vol. I, Willey- Interscience, New York ,1961.        [ Links ]

 

*Corresponding author. E-mail address: carmen.rangel@ineti.pt

Creative Commons License All the contents of this journal, except where otherwise noted, is licensed under a Creative Commons Attribution License