SciELO - Scientific Electronic Library Online

 
vol.22 número2-3Tuberculose PélvicaPromoção, Protecção e Apoio ao Aleitamento Materno na Comunidade Revisão das Estratégias no Período Pré-natal e Após a Alta índice de autoresíndice de assuntosPesquisa de artigos
Home Pagelista alfabética de periódicos  

Serviços Personalizados

Journal

Artigo

Indicadores

Links relacionados

  • Não possue artigos similaresSimilares em SciELO

Compartilhar


Arquivos de Medicina

versão On-line ISSN 2183-2447

Arq Med v.22 n.2-3 Porto  2008

 

Cadeia Respiratória Mitocondrial

Aspectos Clínicos, Bioquímicos, Enzimáticos e Moleculares Associados ao Défice do Complexo I

Mariana Ferreira, Tatiana Aguiar, Laura Vilarinho

Laboratório de Investigação, Centro de Genética Médica Jacinto Magalhães, INSA

 

As citopatias mitocondriais constituem um grupo heterogéneo de doenças que se caracterizam por alterações da estrutura mitocondrial e deficiência da fosforilação oxidativa (OXPHOS). A OXPHOS é constituída por cinco complexos proteicos e dois transportadores de electões. A NADHubiquinona oxidoreductase – complexo I, o primeiro e maior dos cinco complexos é o principal ponto de entrada de electrões, provenientes do ciclo de Krebs, no sistema OXPHOS. Os défices do complexo I são um diagnóstico relativamente frequente de citopatia mitocondrial, sendo causados por mutações no DNA mitocondrial ou no DNA nuclear. Devido a este controlo genético duplo, que contribui para a complexidade do sistema OXPHOS, defeitos no complexo I resultam numa variedade de fenótipos clínicos, que estão geralmente associados a disfunções metabólicas graves da infância, incluindo cardiomiopatia progressiva, encefalomiopatia, leucodistrofia ou síndrome de Leigh. Na investigação dos mecanismos subjacentes aos défices do complexo I, são utilizados vários modelos, tais como a Neuropora crassa e os cíbridos, que conjuntamente com o uso de novas ferramentas bioquímicas (Blue Native Polyacrylamide gel electrophoresis), revelam-se de extrema importância para o processo. Perante a complexidade deste sistema enzimático, quer estrutural como na sua manutenção, é difícil efectuar um diagnóstico molecular na rotina laboratorial. Em Portugal, o estudo destes pacientes tem sido restrito à medição da actividade enzimática dos complexos da cadeia respiratória e pesquisa das mutações pontuais mais comuns e rearranjos do mtDNA, até há alguns meses atrás. Como consequência a maioria dos casos de défices do complexo I continuam por esclarecer sob o ponto de vista molecular, tornando-se assim indispensável avançar para uma investigação mais abrangente, possibilitando desta forma um aconselhamento genético adequado e um diagnóstico pré-natal para as famílias de risco.

Palavras-chave: OXPHOS; complexo I; mtDNA; nDNA; CRM; citopatias mitocondriais.

 

Mitochondrial Respiratory Chain

Mitochondrial cytopathies are a group of genetically heterogeneous disorders, that is characterized by alterations in the mitochondrial structure and oxidative phosphorylation deficiency (OXPHOS). OXPHOS system consists of five multimeric protein complexes and two electron carriers. NADH-ubiquinone oxidoreductase (complex I), the first and largest of the five complexes, is the major entry point of electrons, from Krebs cycle, of the OXPHOS system. Complex I deficiency is a frequently diagnosed defect of the mitochondrial OXPHOS system, caused by mutations in either the mitochondrial DNA (mtDNA) or the nuclear DNA. Because of this dual genetic control, which contributes to the complexity of the OXPHOS system, defects on complex I results in a broad spectrum of clinical phenotypes, that are usually associated to severe metabolic disorders of childhood, including progressive cardiomyopathy, encephalomyopathy, leukodystrophy or Leigh syndrome. Research on the mechanisms underlying mitochondrial complex I deficiency has used several models, such as Neurospora crassa and human cell cybrids, and has taken advantage by the routinary use of novel biochemical tools, such as Blue Native Polyacrylamide gel electrophoresis. Given the complexity of this OXPHOS enzyme, both in structure and maintenance, it is difficult to achieve the molecular diagnosis of patients in a routine basis. In Portugal, the study of these patients did not go beyond the biochemical activity measurements of respiratory chain enzymes and screening of most common point mutations and rearrangements of mtDNA, until some months ago. As a consequence, at the molecular level, the majority of the complex I deficiency cases remain unsolved, being essential to move forward to a more wide-ranging study. Moreover, a correct diagnosis will permit adequate genetic counselling and prenatal diagnosis.

Key-words: OXPHOS; complex I; mtDNA; MRC; nDNA; mitochondrial disorders.

 

 

Texto completo disponível apenas em PDF.

Full text only available in PDF format.

 

 

 

REFERÊNCIAS

1 -Graff C, Bui T, Larsson N. Mitochondrial diseases. Best Pract Res Clin Obstet Gynaecol 2002;16:715-28.

        [ Links ]

2 -DiMauro S, Andreu A. Mutationsin mtDNA: Are We Scraping the Bottom of the Barrel? Brain Pathol 2000;10:431-41.

3 -Chinnery PF, Turnbull DM. Epidemiology and treatment of mitochondrial disorders. Am J Med Genet 2001;106: 94-101.

4 -Janssen R, Nijtmans L, van den Heuvel L, Smeitink J. Mitochondrialcomplex I: Structure, function and pathology. J Inherit Metab Dis 2006;29:449-515.

5 -Vilarinho L, Santorelli FM, Coelho I, ET AL. The mitochondrial DNA A3243G mutation in Portugal:clinical and molecular studies in 5 families. J Neurol Sci,1999;163: 168-74.

6 -Santorelli FM, Tanji K, Kulikova R, at al.Identification of a novel mutation in the mtDNA ND5 gene associated with MELAS. Biochem Biophys Res Commun 1997;238:326-8.

7 -Loeffen JL, Smeitink JA, Trijbels JM, et al.Isolated complex I deficiency in children: clinical, biochemical and genetic aspects.Hum Mutat 2000;15:123-34.

8 -Rustin P, Chretien D, Bourgeron T, et al. Biochemical and molecular investigations in respiratory chain deficiencies. Clin Chim Acta 1994;228:35-51.

9 -Smeitink J, Sengers R, Trijbels F, van den HeuvelL, Human NADH :ubiquinone oxidoreductase. J Bioenerg Biomembr 2001;33:259-66.

10 -Vilarinho L, Cardoso M, Coelho T, Matos I, Coutinho P, Guimarães A. Estudo das Citopatias Mitocondriais – Parte II – Revisão de 30 Doentes. Arq Med 1997;11:160-6.

11 -Almeida E, Loureiro H, Almeida H, Machado M, Cabral A, Vilarinho L. Síndrome de Pearson. Caso Clínico. Acta Pediatr Port 2007;38:79-81.

12 -MITOMAP: A Human Mitochondrial Genome Database. http://www.mitomap.org, 2008.

13 -Nijtmans L, Henderson N, Holt I. Blue Native electrophoresis to study mitochondrial and other protein complexes. Methods 2002;26:327-34.

14 -Jun A, Trounce I, Brown M, Shoeffner J, Wallace D. Use of Transmitochondrial Cybrids to Assign a Complex I Defect to the Mitochondrial DNA-Encoded NADH Dehydrogenase Subunit 6 Gene Mutation at Nucleotide Pair 14459 That Causes Leber Hereditary Optic Neuropathy and Dystonia. Mol Cell Biol 1996;16:771-7.

15 -Videira A. Complex I from the fungus Neurospora crassa. Biochim Biophys Acta 1998;1364:89-100.

16 -Duarte M, Schulte U, Ushakova A, Videira A. Neurospora Strains Harboring Mitochondrial Disease-Associated Mutations in Iron-Sulfur Subunits of Complex I. Genetics 2005; 171:91-9.

17 -Martin MA, Blazquez A, Gutierrez-Solana LG, et al. Leigh syndrome associated with mitochondrial complex Ideficiency due to a novel mutation in the NDUFS1 gene. Arch Neurol 2005;62:659-61.

18 - Bénit P, Chretien D, Kadhom N, et al.Large-Scale deletion and point mutations of the nuclear NDUFV1 and NDUFS1 genes in mitochondrial complex I deficiency. Am J Hum Genet 2001;68:1344-52.

19 -Bugiani M, Invernizzi F, Alberio S, et al. Clinical and molecular findings in children with complex I deficiency. Biochim Biophys Acta 2004;1659:136-47.

20 -Loeffen J, Elpeleq O, Smeitink J, et al. Mutations in the complex I NDUFS2 gene of patients with cardiomyopathy and encephalomyopathy. Ann Neurol 001;49:195-201.

21 -Benit P, Slama A, Cartault F, et al. Mutant NDUFS3 subunit of mitochondrial complex I causes Leigh syndrome. J Med Genet 2004;41:14-7.

22 -Benit P, Steffann J, Lebon S, et al. Genotyping microsatellite DNA markers at putative disease loci in inbred/multiplex families with respiratory chain complex I deficiency allows rapid identification of a novel nonsense mutation (IVS1nt -1) in the NDUFS4 gene in Leigh syndrome. Hum Genet 2003b;112:563-6.

23 -Petruzzella V, Vergari R, Puzziferri I, et al. A nonsense mutation in the NDUFS4 gene encoding the 18 kDa (AQDQ) subunit of complex I abolishes assembly and activity of the complex in a patient with Leigh-like syndrome. Hum Mol Genet 2001;10:529-35.

24 -Budde SM, van den Heuvel LP, Janssen AJ, et al. Combined enzymatic complex I and III deficiency associated with mutations in the nuclear encoded NDUFS4 gene. Biochem Biophys Res Commun 2000;275:63-8.

25 -van den Heuvel, Ruitenbeek W, Smeets R, et al. Demonstration of a new pathogenic mutation in human complex I deficiency: a 5-bp duplication in the nuclear gene encoding the 18-kD (AQDQ) subunit. Am J Hum Genet 1998;62:262-8.

26 -Kirby DM, Salemi R, Sugiana C, et al. NDUFS6 mutations are a novel cause of lethal neonatal mitochondrial complex I deficiency. J Clin Invest 2004;114:837-45.

27 -Triepels RH, van den heuvel LP, Loeffen JL, et al. Leigh syndrome associated with a mutation in the NDUFS7 (PSST) nuclear encoded subunit of complex I. Ann Neurol 1999;45:787-90.

28 -Lebon S, Rodriguez D, Bridoux D, et al. A novel mutation in the human complex I NDUFS7 subunit associated with Leigh syndrome. Mol Genet Metab 2007a; 90:379-82.

29 -Lebon S, Minai L, Chretien D, et al. A novel mutation of the NDUFS7 gene leads to activation of a cryptic exon and impaired assembly of mitochondrial complex I in a patient with Leigh syndrome. Mol Genet Metab 2007b; 92:104-8.

30 -Hinttala R, Uusimaa J, Remes AM, Rantala H, Hassinen IE, Majamaa K. Sequence analysis of nuclear genes encoding functionally important complex I subunits in children with encephalomyopathy. J Mol Med 2005;83:786-94.

31 -Loeffen J, Smeitink J, Triepels R, et al. The first nuclear-encoded complex I mutation in a patient with Leigh syndrome. Am J Hum Genet 1998;63:1598-608.

32 -Procaccio V, Wallace DC. Late-onset Leigh syndrome in a patient with mitochondrial complex I NDUFS8 mutations. Neurology 2004;62:1899-1901.

33 -Schuelke M, Smeitink J, Mariman E, et al. Mutant NDUFV1 subunit of mitochondrial complex I causes leukodystrophy and myoclonic epilepsy. Nat Genet 1999;21:260-1.

34 -Schuelke M, Detjen A, van den heuvel L, et al. New nuclear encoded mitochondrial mutation illustrates pitfalls in prenatal diagnosis by biochemical methods. Clin Chem 2002; 48: 772-5.

35 -Benit P, Beugnot R, Chretien D, et al. Mutant NDUFV2 subunit ofmitochondrial complex I causes early onset hypertrophic cardiomyopathy and encephalopathy. Hum Mutat 2003a; 21: 582-6.

36 -Fernandez-Moreira D, Ugalde C, Smeets R, et al. X-Linked NDUFA1 Gene Mutations Associated with Mitochondrial Encephalomyopathy. Ann Neurol 2007; 61: 73-83.

37 -Ogilvie I, Kennaway N, Shoubridge E. A molecular chaperone for mitochondrial complex I assembly is mutated in a progressive encephalopathy. J Clin Invest 2005;115: 2784-92.

38 -Dunning CJR, McKenzie M, Sugiana C, et al. Human CIA30 is involved in the early assembly of mitochondrial complex I and mutations in its gene cause disease. EMBO 2007:1-11.

 

 

Correspondência:

Drª. Laura Vilarinho

Centro de Genética Médica Jacinto Magalhães

Praça Pedro Nunes, 88

4099-028 Porto

e-mail: laura.vilarinho@igm.min-saude.pt

Creative Commons License Todo o conteúdo deste periódico, exceto onde está identificado, está licenciado sob uma Licença Creative Commons