Servicios Personalizados
Revista
Articulo
Indicadores
- Citado por SciELO
- Accesos
Links relacionados
- Similares en SciELO
Compartir
Arquivos de Medicina
versión On-line ISSN 2183-2447
Arq Med v.21 n.1 Porto ene. 2007
Tabagismo e Diferenciação Óssea: Efeito de Níveis Sanguíneos e Salivares de Nicotina no Comportamento de Células Osteoblásticas de Medula Óssea Humana. Estudo in vitro.
Maria de Lurdes Pereira*, João da Costa Carvalho*, Fernando Martins Peres*, Manuel Gutierrez†, Maria Helena Fernandes*
*Laboratório de Farmacologia e Biocompatibilidade Celular, Faculdade de Medicina Dentária, Universidade do Porto;
†Faculdade de Medicina da Universidade do Porto
Resumo
Os hábitos tabágicos constituem um factor de risco para patologias crónicas que envolvem o tecido ósseo como a osteoporose e a perda óssea alveolar associada à doença periodontal. O processo de formação óssea envolve a diferenciação de células osteoprogenitoras em osteoblastos e a formação de uma matrix colagenosa mineralizada. Assim, o objectivo deste trabalho foi caracterizar o comportamento de células osteoblásticas provenientes de medula óssea humana na presença de concentrações de nicotina representativas dos níveis sanguíneos e salivares presentes nos indivíduos com hábitos tabágicos. As culturas celulares foram mantidas durante 28 dias em condições experimentais que favorecem a diferenciação do fenótipo osteoblástico e cultivadas na ausência (situação controlo) e na presença de nicotina (10 ng/ml - 1 mg/ml). A exposição a 10 ng/ml (concentração representativa dos níveis plasmáticos) não afectou significativamente a proliferação e actividade funcional. A presença de concentrações superiores (0,01 - 1 mg/ml, representativas dos níveis salivares) influenciou o comportamento celular, de modo dependente da dose. As culturas expostas a 0,01 - 0,2 mg/ ml apresentaram estimulação da proliferação celular e da actividade de fosfatase alcalina, associada a uma antecipação do processo de mineralização da matriz extracelular. A exposição a 0,3 mg/ml causou um efeito inibitório inicial, seguido de recuperação dos parâmetros de crescimento e função. Na presença de concentrações superiores, observaram-se efeitos negativos no comportamento celular durante todo o período de incubação; as culturas apresentaram uma diminuição do número de células aderentes, níveis de fosfatase alcalina baixos e extensa vacuolização citoplasmática. Os resultados sugerem a possibilidade de modulação local da actividade osteoblástica pela nicotina, a nível da cavidade oral.
Palavras-chave: nicotina; culturas celulares de medula óssea humana; proliferação celular; diferenciação celular
Abstract
Tobacco Use and Bone Differentiation: Effect of Plasmatic and Salivary Levels of Nicotine on the Beahviour of Human Bone Marrow Osteoblastic Cells
The use of tobacco has been implicated in bone pathologies like osteoporosis and alveolar bone loss associated to periodontal disease. Bone formation involves the differentiation of osteoprogenitor cells into osteoblasts and the formation of a mineralised colagenous matrix. Therefore, the aim of this work was to characterise the behaviour of human bone marrow derived osteoblastic cells in the presence of nicotine at concentrations representatives of those present in plasma and saliva of tobacco users. Cell cultures were maintained for 28 days in experimental conditions that favour the differentiation of the osteoblastic phenotype and cultured in the absence (control) and in the presence of nicotine (10 ng/ml - 1 mg/ml). Results showed that nicotine, at 10 ng/ml (representative of plasmatic levels), did not affect significantly cell proliferation and functional activity. The presence of higher levels, 0.01 - 1mg/ml (representative of the salivary levels), affected cell behaviour in a dose dependent manner. Cultures exposed to 0.01 - 0.2 mg/ml presented increased cell proliferation and alkaline phosphatase activity, associated to an anticipation of the matrix mineralization. Treatment with 0.3 mg/ml caused an initial inhibitory effect followed by a recovery of the cell growth and functional parameters. In the presence of higher concentrations, negative effects on cell behaviour were observed throughout the incubation time; cultures presented decreased numbers of adherent cells, low alkaline phosphatase levels and cytoplasm vacuolation. Results suggest the possibility of local modulation of the osteoblastic activity by nicotine, at the oral cavity.
Key-words: nicotine; human bone marrow cell cultures; cell proliferation; cell differentiation
Texto completo disponível apenas em PDF.
Full text only available in PDF format.
REFERÊNCIAS
1 - Kleerekoper M, Avioli L. Evaluation and treatment of Postmenopausal Osteoporosis. In: Favus MJ, editor. Primer on the Metabolic Bone Diseases and Disorders of Mineral Metabolism. Raven Press. 1993. pp. 223-9. [ Links ]
2 - Albandar JM, Adesanya MR, Streckfus CF, Winn DM. Cigar, pipe, and cigarette smoking as a risk factor for periodonta disease and tooth loss. J Periodontol 2000;71:1874-81.
3 - Schuller AA, Holst D. An “S-shaped” relationship between smoking duration and alveolar bone loss: generating a hypothesis. J Clin Periodontol 2001; 72:1164-71.
4 - Heitz-Mayfield LJA. Disease progression: identification of high-risk groups and individuals for periodontitis. J Clin Periodontol 2005;32:196-209.
5 - Law MR, Hackshaw AK. A meta-analysis of cigarette smoking, bone mineral density and risk of hip fracture: recognition of major effect. BMJ 1997;315:841-6.
6 -Valimaki MJ, Kärkkäienem M, Lamberg-Allardt C, Laitinen K, Alhava E, Heikkein J. Exercise, smoking, and calcium intake during adolescent and early adulthood as determinants of peak bone mass. BMJ 1994;309:230-5.
7 - Benson BW, Shulman JD. Inclusion of tobacco exposure as a predictive factor for decreased bone mineral content. Nicotine and Tobacco Research 2005;7:719-24.
8 - Gerdhem P, Obrant KJ. Effects of cigarrete-smoking on bone mass as assessed by Dual-Energy X-Ray Absorptiometry and Ultrasound. Osteoporos Int 2002; 13:932-6.
9 - Bergström J. Influence of tobacco smoking on periodontal bone height. Long term observation and a hypothesis. Journal of Clin Periodontol 2004;4:260-6.
10 - Paulender J, Wennstrom JL, Axelsson P, Lindh J. Some risk factors for periodontal bone loss in 50-year-old individuals. A 10-year cohort study. J Clin Periodontol 2004;7:489-96.
11 - Jansson L, Lavstedt S, Zimmerman M. Prediction of marginal bone loss and tooth loss - a prospective study over 20 years. J Clin Periodontol 2002;8:672-8.
12 - Bain CA, Moy PK. The influence of smoking on bone quality and implant failure. Int J Oral Maxillofac Implants 1994;9:123.
13 - Hollinger OJ, Schmitt JM, Buck D, Hwang K. Impact of nicotine on bone healing. J Biomed Mater Res 1999;45:294-301.
14 - Esposito M, Hirsch J, Lehholm U, Thomsen P. Biological factors contributing to failures of osseointegrated oral implant (II). Etiophatogenesis. Eur J Oral Sci 1998;106:721-64.
15 - Benowitz NL. Clinical pharmacology of nicotine. Ann Rev Med 1986;37:21-32.
16 - Russell MA, Feyerabend C, Cole PV. Plasma nicotine levels after cigarette smoking and chewing nicotine gum. BMJ 1976;1:1043-6.
17 - Mariggiò MA, Guida L, Laforgia A, Santacroce R, Curci E, Montemurro P. Nicotine effects on polymorphonuclear cell apoptosis and lipopolysaccharide-induced monocyte functions. A possible role in periodontal disease? J Periodont Res 2001;36:32-9.
18 - Pabst MJ, Pabst KM, Collier JA, Coleman TC, Lemons-Prince ML, Godat MS et al. Inhibition of neutrophil and monocyte defensive functions by nicotine. J Periodontol 1995;66:1047-55.
19 - Daftari KT, Whitesides TE, Heller JG, Goodrich AC, MacCarey BE, Hutton CW. Nicotine on the revascularization of bone graft. An experimental study in rabbits. Spine 1994;19:904-11.
20 - Pinto JR, Bosco AF, Okamoto T, Guerra JB, Piza IG. Effects of nicotine on the healing of extraction sockets in rats. A histological study. Braz Dent J 2002;13:3-9.
21 - Nguyen VT, Hall LL, Gallacher G, Ndaye A, Jolkovsky DL, Webber RJ et al. Choline acetyltranferase acetylcholinesterase, and nicotinic acetylcholine receptors of human gingival and esophageal epithelia. J Dent Res 2000;79:939-49.
22 - Alpar B, Leyhausen G, Sapotnick A, Günay H, Geurtsen W. Nicotine-induced alterations in human primary periodontal ligament and gingival fibroblast cultures. Clin Oral Invest 1998;2:40-6.
23 - James JA, Sayers MN, Drucker DB, Hull PS. Effects of tobacco products on the attachment and growth of periodontal ligament fibroblasts. J Periodontol 1999;70:518-25.
24 - Fang MA, Frost PJ, Iida-Klein A, Hahn TJ. Effects of nicotine on cellular function in UMR 106-01 osteoblast-like cells. Bone 1991;12:283-6.
25 - Ramp WK, Lenz LG, Galvin RJ. Nicotine inhibits collagen synthesis and alkaline phosphatase activity, but stimulates DNA synthesis in osteoblast-like cells. Proc Soc Exp Biol Med 1991;197:36-43.
26 - Yuhara S, Kasagi S, Inoue A, Otsuka E, Hirose S, Hagiwara H. Effects of nicotine on cultured cells suggest that it caninfluence the formation and resorption of bone. Eur J Pharmacol 1999;383:387-93.
27 - Liu XD, Zhu YK, Umino T, Spurzem JR, Romberger DJ, Wang H, Reed E, Rennard SI. Cigarette smoke inhibits osteogenic differentiation and proliferation of human osteoprogenitor cells in mono-layer and three-dimensional collagen gel culture. J Lab Clin Med 2001;137:208-19.
28 - Walker LM, Preston MR, Magnay JL, Thomas PB, El Haj AJ. Nicotinic regulation of c-fos and osteopontin expression in human-derived osteoblast-like cells and human trabecular bone organ culture. Bone 2001;28:603-8.
29 -Tanaka H, Tanabe N, Suzuki N, Shoji M, Torigoe H, Sugaya A, Motohashi M, Masao M et al. Nicotine affects mineralized nodule formation by the human osteosarcoma cell line Saos-2. Life Sciences 2005;77:2273-84.
30 - Cuff MJ, MacQuade MJ, Scheidt MJ, Sutherland DE, Van Dyke TE. The presence of nicotine on root surfaces of periodontally diseased teeth in smokers. J Periodontol 1989;60:564-9.
31 - Lowry OH, Rosebroug NJ, Farr AL, Randal RJ. Protein measurement with the folin phenol reagent. J Biol Chem 1951;193:265-7.
32 - Gayle M. Bone. In: Brancroft JD, Gamble M, editors. Theory and Practice of Histological Techniques. ChurchHill Livingstone; 2002. pp.293.
33 - Owen M. Marrow stromal stem cells. J Cell Sci Suppl 1988;10:63-76.
34 - Stein GS. Mechanisms regulating osteoblast proliferation and differentiation. In: Bilezikiam JP, Raisz LG, Rodam GA, editors. Principles of Bone Biology. Academic Press; 1996. pp.69-86.
35 - Coelho MJ, Trigo Cabral A, Fernandes MH. Human bone cell cultures in biocompatibility testing. Part I: osteoblastic differentiation of serially passaged human bone marrow cells cultured in α-MEM and DMEM. Biomaterials 2000;21:1087-94.
36 - Chamson A, Garrone R, Auger C, Frey J. Effects of Tobacco smoke extracts on the ultrastructure of fibroblasts in culture. J Submicros Cytol 1980;12:401-6.
37 - Ohkuma S, Poole B. Cytoplasmic vacuolation of mouse peritoneal macrophages and the uptake into lysosomes of weakly basic substances. J Cell Biol 1981;90:656-64.
38 - Lynch M, Stein J, Stein G, Lian J. The influence of type I collagen on the development and maintenence of the osteoblast phenotype in primary and passaged rat calvarial osteoblasts: modification of expression of genes supporting cell growth, adhesion and extracellular matriz mineralization. Exp Cell Res 1995;216:35-44.
39 - Anderson HC, Morris DC. Mineralization. In: Mundy JR, Martin TJ, editors. Handbook of Experimental Pharmacology Vol 107. Springer-Verlag. 1993.pp.267-98.
40 - Bellows CG, Aubin JE, Heersch JNM. Initiation and progression of mineralization of bone nodules formed in vitro: the role of alkaline phosphatase and organic phosphates. Bone and Min 1991;14:27-40.
41 - Bikle DD. Regulation of bone mineral homeostasis: an integrated view. In: Favus MJ, editor. Primer on the Metabolic Bone Diseases and Disorders of Mineral Metabolism. Raven Press; 1993. pp.76-80.
42 - Dvorak M, Siddiqua A, Ward D, Carter D, Dallas S, Nemeth E. Physiological changes in extracellular calcium concentration directly control osteoblast function in the absence of calciotropic hormones. PNAS 2004;101:5140-5.
Correspondência:
Maria Helena Fernandes
Lab. Farmacologia e Biocompatibilidade Celular
Faculdade de Medicina Dentária, UP
Rua Dr. Manuel Pereira da Silva 4200-393 Porto
e-mail: mhfernandes@fmd.up.pt