SciELO - Scientific Electronic Library Online

 
vol.20 número1-2Advanced composite material simulationBulk nanostructured shape memory alloys índice de autoresíndice de assuntosPesquisa de artigos
Home Pagelista alfabética de periódicos  

Serviços Personalizados

Journal

Artigo

Indicadores

Links relacionados

  • Não possue artigos similaresSimilares em SciELO

Compartilhar


Ciência & Tecnologia dos Materiais

versão impressa ISSN 0870-8312

C.Tecn. Mat. v.20 n.1-2 Lisboa jan. 2008

 

Advanced high temperature materials: Aeroengine fatigue

 

M. R Winstone*,  J. W. Brooks**

 

*Physical Sciences Department, Defence Science and Technology Laboratory, Porton Down, Salisbury, SP4 0JQ, UK

 ** QinetiQ Ltd., Cody Technology Park, Farnborough, GU14 0LX, UK

 

ABSTRACT: The aeroengine business is intensely competitive and commercial success relies on continuous improvements in engine efficiency, with reduced environmental impact and lower operating costs.  Innovation through advanced materials is a powerful tool in the quest for market share. This paper discusses the recent advances in materials technologies for aeroengine components with particular reference to enhancing the fatigue life of turbine disc components. Computational modelling of materials processing is contributing strongly to the improved design of the microstructure and the delivery of enhanced high temperature fatigue properties. Future trends are towards new manufacturing approaches in which the microstructure/composition is varied within the component in response to the service temperature and stress distribution. Dual microstructure and dual alloy concepts are described. Implementation of these approaches requires detailed knowledge of microstructure/property relationships and process models to simulate the structure generated during the complex thermomechanical processing. 

Keywords: Nickel alloys, Fatigue, Crack growth, Thermomechanical processing

 

RESUMO: A indústria de turbinas de aviões é altamente competitiva e nela o sucesso depende de melhorias contínuas naeficiência dos motores, na redução dos impactos ambientais e no abaixamento dos custos operacionais. A inovação através demateriais avançados é um poderoso instrumento na procura de cota de mercado. Este artigo discute os avanços recentes emtecnologias de materiais para componentes de turbinas de avião, com particular referência à melhoria da vida à fadiga dediscos de turbinas e seus componentes. A modelação computacional do processamento dos materiais contribui fortementepara a melhoria do projecto de microestrutura e para se conseguirem melhores propriedades de fadiga a alta temperatura. Astendências futuras apontam para novas abordagens de fabrico nas quais a microestrutura e composição são variadas nocomponente em resposta à temperatura de serviço e distribuição de tensões. Microestruturas duais e conceitos dual alloy são discutidos. A implementação destas abordagens requer conhecimento detalhado das relações microestrutura/propriedades emodelações do processo para simular a estrutura obtida durante processos termomecânicos complexos.

Palavras chave: ligas de níquel, fadiga, crescimento de fissura, processamento termomecânico

 

Texto completo disponível apenas em PDF.

Full text only available in PDF format.

 

REFERENCES

[1] “The Jet Engine”, Published by Rolls-Royce plc, London 2005

[2] R. C. Reed, “The Superalloys: Fundamentals and Applications”. Cambridge University Press, 2006        [ Links ]

[3] M. R. Winstone and G. F. Harrison, “Fatigue Lifing Methodologies for Aeroengine Discs and the Effect of Material Strength”, 9th Portuguese Conference on Fracture, Setubal, 18-20 February 2004, 445, Portuguese Society of Materials.

[4] A. Kermanpur, D. Evans, R. Siddall, P. D. Lee and M. McLean, “Effect of Process Parameters on Grain Structure Formation during Vacuum Arc Remelting of INCONEL718”, Int. Sym. on Liq. Metal Proc. & Casting 2003, Nancy, France, Sept 22-25, (Ed. Lee, P.D., Mitchel, A., Bellot, J-P, Jardy, A.), 281, SF2M, Paris

[5] W. Wang, P. D. Lee and M. McLean., Acta Mat. 51, (2003) 2971.

[6] A. Kermanpur, W. Wang., P. D. Lee and M. McLean, Mat. Sci. and Tech. 19 (2003)  859.

[7] S. C. Medeiros, Y. V. R. K. Prasad, W. G. Frazier and R. Srinivasan,, Mats. Sci. and Eng., A293 (2000) 198.

[8] B. Antolovich, and M. Evans, “Predicting Grain Size Evolution of UDIMET Alloy 718 during the Cogging Process”, Superalloys 2000, 39, TMS Warrendale, PA

[9] R. W. Evans, “Microstructural Modeling of Near Net Shape Forgings”, Proc. Conf. EUROMAT ‘89’, Deutsche Gesellschaft fur Metallkunde.

[10]  C. A. Dandre, S. M. Roberts, R. W. Evans and R. C. Reed, Mat. Sci & Tech, 16 (2000) 14.

[11]  R. P. Guest, “The Dynamic and Meta-Dynamic Recrystallisation of the Nickel Base Superalloy Inconel 718”, PhD Thesis University of Cambridge, (2005)

[12]  R. P. Guest and S. Tin, “Dynamic and Metadynamic Recrystallisation of IN718”, Superalloys 718 and Derivatives 2005), 373, TMS Warrendale PA

[13]  Guest, R.P. and Tin, S., “Modelling Microstructural Transformations of Nickel Base Superalloy IN718 during Hot Deformation”, Superalloys 718 and Derivatives 2005, 385, TMS Warrendale PA

[14]  H. K. D. H. Bhadeshia, Metal Science, 16 (1982) 159.

[15]  P. L. Blackwell, J. W. Brooks and P. S. Bate,  J.  Mat. Sci. & Tech., 14  (1998)  1181.

[16]  I. M. Wilcock, D. G. Cole, J. W. Brooks and M. C. Hardy, “Creep/Fatigue Behaviour of P/M Disc Alloys”. Charles Parsons Turbine Conference 2003, Dublin, Ed. Strang, A. et al, 749, Institute of Materials Minerals and Mining, London.

[17]  I. M. Wilcock, M. C. Hardy and M. B. Henderson, “Elevated Temperature Fatigue Crack Growth Behaviour of a Nickel Disc Alloy”, AeroMat 2002, Orlando, FL, ASM International.

[18]  N. J. Hide, M. B. Henderson and P. A. S. Reed, “Effects of Grain and Precipitate Size Variation on the Creep-Fatigue Behaviour of Udimet 720Li in Both Air and Vacuum”, Superalloy 2000, Ed. Pollock, T.M. et al, 495, TMS Warrendale PA,

[19]  J. Lemsky., “Dual microstructure heat treatment for advanced turbine engine component”, TMS/ASM Spring Symposium, Niskayuna, New York, 23 May 2006

[20]  M. B. Henderson, H. Berlet, G. McColvin, J. C. Garcia, S. Peteves, J. Montagon, G. Raisson, S. Davies, I. M. Wilcock, and P. Janschek, Manufacture and spin test evaluation of bimetallic gas turbine components, Charles Parsons Turbine Conference 2003, Dublin, Ed. Strang, A. et al, 605

[21]  H. Burlet, M. B. Henderson, G. McColvin, J. C. Garcia, S. Peteves, H. J. Klingelhoffer,  M. Maldini, U. E. Klotz, T. Luthi, and I M. Wilcock, 2003, Microstructural and mechanical performance of diffusion bonded bimetallic model discs, Charles Parsons Turbine Conference 2003, Dublin, Ed. Strang, A. et al, 735-748

 

© Crown copyright 2008.  Published with the permission of the Defence Science and Technology Laboratory on behalf of the Controller of HMSO