Serviços Personalizados
Journal
Artigo
Indicadores
- Citado por SciELO
- Acessos
Links relacionados
- Similares em SciELO
Compartilhar
Jornal Português de Gastrenterologia
versão impressa ISSN 0872-8178
J Port Gastrenterol. v.13 n.2 Lisboa mar. 2006
Diagnóstico genético na síndroma de Lynch: implicações da localização de mutações germinais em genes de reparação do ADN
S. Ferreira1, I. Claro1, I. Francisco2, R. Sousa1, P. Lage1, C. Albuquerque2, B. Filipe2, A. Suspiro1, P. Rodrigues1, M. Cravo1,2, P. Fidalgo1, C. Nobre Leitão1,2
Resumo
Introdução: O diagnóstico clínico da Síndroma de Lynch (SL) baseia-se nos critérios de Amesterdão (CA); adicionalmente, algumas famílias são identificadas com base nos critérios de Bethesda (CB). A SL resulta de mutações germinais em genes de reparação do ADN, sobretudo no MLH1 e MSH2, mas também no MSH6, PMS1 e PMS2. Não foram ainda identificadas localizações preferenciais das mutações nestes genes que permitam orientar o diagnóstico genético.
Objectivos: Em doentes de famílias com SL com mutações identificadas nos genes MLH1, MSH2 ou MSH6, correlacionar as características clínicas com a localização das mutações.
Doentes e Métodos: Incluíram-se 58 doentes (21 H/37 M) pertencentes a 33 famílias com CA e 7 famílias com CB, todos com mutação germinal identificada num dos genes de reparação do ADN. Registou-se o tipo de tumor desenvolvido, a idade de diagnóstico e as características patológicas dos carcinomas do cólon e recto (CCR). A análise mutacional nos genes MLH1, MSH2 e MSH6 foi efectuada por DGGE, seguida de sequenciação directa a partir do produto de PCR. Nas famílias cujo diagnóstico genético foi inconclusivo por DGGE, procedeu-se a MLPApara identificação de grandes delecções.
Resultados: Desenvolveram CCR 48/58 (83%) doentes, com uma média de idades de 45 anos (25-74). Os restantes 10 doentes apresentaram outros tumores do espectro da SL (6 endométrio, 2 ovário, 1 urotélio e 1 estômago). Foram identificadas 22 famílias com mutações no gene MLH1, 17 no gene MSH2 e uma no gene MSH6. A maioria (76%) das mutações patogénicas no gene MLH1 encontrava-se entre os exões 10 e 19, sendo neste grupo a média de idades de desenvolvimento do CCR mais tardia, 49,8 versus 32,5 anos (p=0,01) e mais frequente a presença de tumores extra-cólicos. No gene MSH2, 71% das mutações patogénicas encontravam-se entre os exões 1 e 8, tendo também estas predominado em famílias com tumores extra-cólicos.
Conclusões: Os resultados observados sugerem que, de acordo com as características das famílias, se deva iniciar o diagnóstico genético pelos exões mais frequentemente mutados em cada gene.
Summary
Background: HNPCC diagnosis is based on the
Aims: In patients belonging to HNPCC families with identified mutations in MLH1, MSH2 or MSH6 genes, to correlate tumor characteristics with the location of the mutation.
Patients and Methods: We studied 58 patients (21M/37F) belonging to 33 families with AC and 7 families with BG, all with an identified germline mutation. Age of diagnosis and pathological characteristics of the colorectal cancer (CRC) were recorded, as well as the presence of HNPCC extracolonic cancers. Mutational analysis in MLH1, MSH2 and MSH6 genes was performed by DGGE and direct sequencing. In families with no identified point mutations, we also performed MLPA for detection of large deletions.
Results: A total of 48/58 (83%) of the patients had CRC, with a mean age at diagnosis of 45 years (25-74). The remaining 10 patients had an HNPCC-associated cancer other than CRC (6 endometrial, 2 ovarian, 1 urinary tract and 1 stomach). We identified 22 families with MLH1 mutations, 17 with MSH2 mutations and one with a MSH6 mutation. Most (76%) of the pathogenic mutations in MLH1 gene were located between exons 10 and 19. In this location mean age of CRC diagnosis was higher, 49.8 versus 32.5 years (p=0.01) and more associated HNPCC extracolonic tumors were found. In MSH2, 71% of the mutations were located between exons 1 and 8 and, in this group, more extra-colonic tumors belonging to HNPCC spectrum were identified.
Conclusions: Our results suggest that based on family characteristics, genetic diagnosis should be started by the more frequently mutated exons in each gene.
Texto Completo disponível apenas em PDF
Full text only available in PDF format
Bibliografia
1. Papadopoulos N, Lindblom A. Molecular basis of HNPCC: mutations of MMR genes. Hum Mutat 1997; 10: 89-99. [ Links ]
2. Watson P, Lynch HT. Extracolonic cancer in hereditary nonpolyposis colorectal cancer. Cancer 1993; 71: 677-85.
3. Vasen HF, Mecklin JP, Khan PM, Lynch HT. The International Collaborative Group on Herediatry Non-Polyposis Colorectal Cancer (ICG-HNPCC). Dis
4. Vasen HF, Watson P, Mecklin JP, Lynch HT. New clinical criteria for hereditary nonpolyposis colorectal cancer (HNPCC, Lynch syndrome) proposed by the International Collaborative group on HNPCC. Gastroenterology 1999; 116: 1453-6.
5. Lynch HT, de la Chapelle A. Hereditary colorectal cancer. N Engl J Med 2003; 348: 919-32.
6. Rodriguez-Bigas MA, Boland CR, Hamilton SR,
7. Boland CR, Thibodeau SN, Hamilton SR, Sidransky D, Eshleman JR, Burt RW, et al. A National Cancer Institute Workshop on Microsatellite Instability for cancer detection and familial predisposition: development of international criteria for the determination of microsatellite instability in colorectal cancer. Cancer Res 1998; 58: 5248-57.
8. Umar A, Boland R, Terdiman J, Syngal S, de la Chapelle A, Ruschoff J, et al. Revised Bethesda Guidelines for Hereditary Nonpolyposis Colorectal Cancer (Lynch Syndrome) and microsatellite instability. J Nat Cancer Inst 2004; 96: 261-68.
9. Nystrom-Lahti M, Wu Y, Moisio AL, Hofsta RM, Osinga J, Mecklin JP, et al. DNA mismatch repair gene mutations in 55 kindreds with verified or putative hereditary non-polyposis colorectal cancer. Hum Mol Genet 1996; 5: 763-9.
10. Wu Y, Nystrom-Lahti M, Osinga J, Looman MW, Peltomaki P, Aaltonen LA, et al. MSH2 and MLH1 mutations in sporadic replication error-positive colorectal carcinoma as assessed by twodimensional DNA electrophoresis. Genes Chromosomes Cancer 1997; 18: 269-78.
11. Wu Y, Berends M, Mensink R, Kempinga C, Sijmons R, Hofstra R, et al. Association of Hereditary Nonpolyposis Colorectal cancer-Related Tumors Displaying Low Microsatellite Instability with MSH6 Germline Mutations. Am J Hum Genet 1999; 65: 1291-98.
12. Bunyan D, Eccles D, Sillibourne J, Wilkins E, Simon Thomas N, Shea-Simonds J, et al. Dosage analysis of cancer predisposition genes by multiplex ligation-dependent probe amplification. Br J Cancer 2004; 91: 1155-59.
13. Gille J, Hogervorst F, Pals G, Wijnen J, van Schooten R, Dommering C, et al. Genomic deletions of MSH2 and MLH1 in colorectal cancer families detected by a novel mutation detection approach. Br J Cancer 2002; 87: 892-97.
14. Wang Y, Friedl W, Lamb erti C, Jungck M, Mathiak M, Pagenstecher C, et al. Hereditary nonpolyposis colorectal cancer: frequent occurrence of large genomic deletions in MSH2 and MLH1 genes. Int J Cancer 2003; 103: 636-41.
15. Kim H, Jen J, Vogelstein B, Hamilton SR. Clinical and pathological characteristics of sporadic colorectal cancer carcinomas with DNA replication errors in microsatellite sequences. Am J Pathol 1994; 145: 148-156.
16. Lage P, Cravo M, Albuquerque C, Gomes T, Claro I, Chaves P, et al. Instabilidade de microssatélites em carcinomas do cólon e recto esporádicos: valor na detecção de novos casos de síndromes hereditários. GE-Jornal Português de Gastrenterologia 1998; 5:13-20.
17. Lindor NM, Burgart LJ, Leontovich O, Goldberg RM, Cunningham JM, Sargent DJ, et al. Immunohistochemistry versus microsatellite instability testing in phenotyping colorectal tumors. J Clin Oncol 2002; 20: 1043-48.
18. Chaves P, Cruz C, Lage P, Claro I, Cravo M, Nobre Leitão C, Soares J. Immunohistochemical detection of mismatch repair gene proteins as a useful tool for the identification of colorectal carcinoma with mutator phenotype. J Pathol 2000; 191: 355-60.
19. Peltomaki P, Gao X, Mecklin J-P. Genotype and phenotype in hereditary nonpolyposis colon cancer: a study of families with different vs. shared predisposing mutations. Familial Cancer 2001; 1:9-15.
20. Scott R, McPhillips M, Meldrum C, Fitzgerald P, Adams K, Spigelman A, et al. Hereditary nonpolyposis colorectal cancer in 95 families: differences and similarities between mutation-positive and mutation-negative kindreds. Am J Hum Genet 2001; 68: 118-127.
21. Peltomaki P, Vasen HF. Mutations predisposing to hereditary nonpolyposis colorectal cancer: database and results of a collaborative study: The International Collaborative Group on Hereditary Non Polyposis Colorectal Cancer. Gastroenterology 1997; 113: 1146-58.
22. Wagner A, Hendriks Y, Meijers-Heijboer E, Leeuw W, Morreau H, Hofstra R, et al. Atypical HNPCC owing to MSH6 germline mutations: analysis of a large Dutch pedigree. J Med Genet 2001; 38:318-22.
23. Plaschke J, Engel C, Kruger S, Holinski-Feder E, Pagenstecher C, Mangold E, et al. Lower incidence of colorectal cancer and later age of disease onset in 27 families with pathogenic MSH6 germline mutations compared with families with MLH1 or MLH2 mutations: The German hereditary nonpolyposis colorectal cancer consortium. J Clin Oncol 2004; 22: 4486-94.
24. Wijnen J, Meera Khan P, Vasen H, Menko F, van der Klift H, van den Broek M, et al. Majority of hMLH1 mutations responsible for hereditary nonpolyposis colorectal cancer cluster at the exonic region 15-16. Am J Hum Genet 1996; 58: 300-7.
(1) Serviço de Gastrenterologia
(2) Centro de Investigação de Patobiologia Molecular.
Instituto Português de Oncologia de Francisco Gentil, Centro de Lisboa, Portugal.
Recebido para publicação: 12/10/2005
Aceite para publicação: 08/02/2006