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Abstract 

This study attempts to forecast tourist inflow in South East Asia and 
choses Singapore as a case. For Singapore, tourism is one of the major 
sources of foreign exchange earnings since it has no natural resources 
to support its economy. Therefore, forecasting of tourist arrivals in the 
country becomes very important for the reason that the forecasting 
may help tourism related service industries (e.g. airlines, hotels, 
shopping malls, transporters and catering services, etc.) to plan and 
prepare their resources and activities in an optimal way. In this paper, 
seasonal autoregressive integrated moving average (SARIMA) 
methodology was considered for making monthly predictions on 
tourist arrival in Singapore. The best model for forecasting is found out 
to be (1,0,1)(1,1,0)12 and monthly forecasting were obtained for two 
years in future. Further, various statistical tests (e.g. Dickey Fuller, 
KPSS, HEGY, Ljung-Box, Box-Pierce etc.) were applied on the time 
series for adequacy of best model to fit, residual autocorrelation 
analysis and for the accuracy of the prediction. 

Keywords: Forecasting, Seasonal ARIMA, Tourist Arrivals, Singapore. 

 

Resumo 

Este estudo tenta prever o fluxo turístico no Sudeste Asiático e escolhe 
Singapura como um caso. Para Singapura, o turismo é uma das principais 
fontes de divisas, uma vez que não possui recursos naturais para 
sustentar a sua economia. Portanto, a previsão de chegadas de turistas 
no país torna-se muito importante pelo motivo que a previsão pode 
ajudar as indústrias de serviços relacionados com o turismo (por 
exemplo, companhias aéreas, hotéis, centros comerciais, 
transportadoras e serviços de catering, etc.) para planear e preparar os 
seus recursos e atividades de uma forma otimizada. Neste trabalho, foi 
utilizada a metodologia SARIMA de modo a fazer previsões mensais de 
chegadas turísticas a Singapura. O melhor modelo de previsão é 
considerado ser (1,0,1) (1,1,0) 12, sendo obtidas  previsões mensais num 
prazo de dois anos relativamente ao futuro. Além disso, vários testes 
estatísticos (por exemplo Dickey Fuller, KPSS, Hegy, Ljung-Box, Box-
Pierce etc.) foram aplicados sobre as séries cronológicas para adequação 
do melhor modelo para o ajuste, da análise de auto correlação residual e 
para a precisão da previsão. 

Palabras clave: Previsão, Seasonal ARIMA, chegadas de turistas, 
Singapura. 

 

1. Introduction 

Tourism is an activity in which a person travels to and stays in 

places outside his or her usual environment (e.g. hometown or 

city) for any number of days but less than one year. Tourism is 

important for any country in the world for three reasons, one, 

tourists travelling from foreign countries spend foreign exchange 

while consuming services of the host country, two, the 

promotion of opportunities for businesses and, three, promote 

interconnectedness throughout the world. While first two 

reasons boosts the host country's economy, the third reason 

offers current and future tourists the opportunities to learn 

about the host country, its culture and tourism services it offers. 

Tourists, usually, tend to have disposable income that they are 

able to spend during their visits to different locations and 

countries. Some tourists travel for personal leisure, some for 

shorter vacations while other travel on official/business trips, 

medical tourism, sports trips or family vacations etc. In all the 

cases of tourism, the country being visited gets benefitted, 

economically and socially. According to Economic Impact 

Research at world Travel and Tourism Council (WTTC), the 

contribution of Tourism to the world economy was at 3.1% in 

2013 (or US$2.2 trillion) to world gross domestic product 

(WGDP). World tourism also created about 101 million jobs in 

2010. Employment grew by 1.8% due to an additional 1.4 

million jobs that were generated by tourism activities in 2013, 

according to WTTC. 

Amrik Singh (1997) discussed that during the decade of 1990s, 

the Asia Pacific region (including North East Asia, South East 

Asia and the Oceania) was the fastest growing tourism regions 

in the world. In his research, he reviewed the growth and 

development of the tourism industry in the Asia Pacific region 

and concluded that the region is expected to maintain a high 

rate of growth in future. 

Chi and Bernard (2005) used and analyzed eight forecasting 

models to forecast inbound tourist arrivals to Singapore. 

Among the outcomes of the study, authors' remarkable 

conclusions were that (1) if the length of the forecast horizon 

is changed, the effect can be seen on the choice of the best 

model that fit for forecasting; and (2) a combined model could 

provide the best forecasting performance. On the contrast, Chi 

(2005) reported that the hypothesis of tourism-led economic 

growth is not held in the Korean economy. Author used Engle-

Granger two-stage approach and a bivariate Vector Auto 

Regression (VAR) model to investigate the causal relations 

between tourism growth and economic expansion in the 

Korean economy. The failed hypothesis is supported by 

author's test of the sensitivity of causality test under different 

lag selections along with the optimal lag. But, do all the 

economies fail to show growth led by tourism? 

In a study, for the 1990 to 2002 period, on relationships 

between tourism development and economic growth, Lee and 

Chang (2008) determined that tourism has greater impact on 
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GDP in non-OECD countries compare to OECD countries 

(including those in Asia, Latin America and Sub-Sahara Africa). 

This is one of the many evidences which favors that there are 

some economies which see growth due to tourism. Another 

study, which also favors the similar conditions, is conducted in 

Singapore. Economic Survey of Singapore (Ministry of Trade & 

Industry, 2010) reported that tourism generated on average 

101,200 jobs per year between 2007 and 2010 in Singapore. It 

also reported that tourism in Singapore was estimated at 3.5 

percent (or $7.9 billion) of its economy (nominal GDP) in 2010.  

Earlier, Durbarry (2004) also suggested that tourism has a 

significant positive impact on Mauritian economic 

development. 

Forecasting plays a major role in tourism planning. An estimate 

of future demand for tourism is a crucial input for the 

promotion of tourism projects (Cho, 2003). If the prediction of 

the changes in tourism demand is available, it could help 

greatly in developing tourism. Cho investigated the application 

of exponential smoothing, ARIMA, and Elman's Model of 

Artificial Neural Networks (ANN) time-series forecasting 

techniques to predict the number of international tourist 

arrivals in Hong Kong and concluded that ANN was the best 

method for forecasting. 

Accuracy is particularly important when forecasting tourism 

demand (Witt and Witt, 1995). The author also suggested that 

there exists considerable scope for improving the econometric 

models employed in forecasting of tourism demand. The 

authors also argued that, although, no single forecasting 

method performs consistently best across different situations, 

yet as an alternative and worthy of considerations, researchers 

can focus on autoregression, exponential smoothing and 

econometrics models for forecasting. Lim and McAleer (2002), 

in their research, used Box-Jenkins Autoregressive Integrated 

Moving Average (ARIMA) and Seasonal Autoregressive 

Integrated Moving Average (SARIMA) models to forecast 

tourist arrivals to Australia from Hong Kong, Malaysia and 

Singapore. Authors also estimated mean absolute percentage 

error (MAPE) and root mean squared error (RMSE) to 

measures forecast accuracy. They concluded that, although, 

the ARIMA model outperforms the seasonal ARIMA models for 

Hong Kong and Malaysia, the forecasts of tourist arrivals are 

not as accurate as in the case of Singapore.  

The forecasts obtained, in the study conducted by Goh and 

Law (2002) using models SARIMA and multivariate SARIMA 

(MARIMA) with intervention, were compared with other eight 

time series models and found that SARIMA has the highest 

accuracy in forecasting. Butler (1994) commented that the 

obvious seasonality in tourist arrival is important and it should 

be neglected while making forecasts for tourist arrival. Due to 

this important fact, various models have been developed in 

tourism forecasting. 

In the recent research, Moss et al (2013) studied two popular 

time series methods, the decomposition methodology and 

SARIMA approach, for modeling seasonality in tourism 

forecasts. The two methodologies were compared and the 

accuracy of each of the two models was discussed. In fact, one 

of the best and comprehensive studies about tourism 

seasonality is by Baron (1975). The researcher analyzed the 

seasonal pattern of tourist arrivals at borders for 16 different 

countries over a 17 year time frame. He also commented that 

the seasonality in tourism is still being researched by several 

researchers and policy makers, all over the world. 

In a competition to forecast with best model to fit, the 

econometric approaches for forecasting are emphasized when 

annual data are used whereas the time series models (such as 

SARIMA) usually show their advantage for higher frequency 

(e.g. monthly) data (Song and Li, 2008). In another study, Chen 

et al. (2009) compared three models of forecasting (Holt-

Winters, Grey Modelling and SARIMA) to forecast inbound air 

traffic to Taiwan between 1996 and 2007. The authors found 

the SARIMA model as the best forecasting model for their time 

series data. 

The purpose of this study is to use a popular time series 

method (more precisely, SARIMA) for forecasting tourist 

arrivals while considering the seasonality in the time series 

pattern of arrivals. The reason for selecting SARIMA is based 

upon the accuracy level obtained in this model as compare to 

ARIMA and Holt Winters models (Table 1).  Clearly SARIMA 

model outperforms the other in accuracy.  

Table 1 - Accuracy Comparison 

 

SARIMA 
(1,0,1)(1,1,0)12 

ARIMA 
(0,1,1) 

Holt Winters 

ME 772.40 19358.95 480.91 

RMSE 52781.40 78923.57 125341.51 

MAE 33392.60 61092.88 92775.21 

MPE 0.27 1.52 0.10 

MAPE 3.21 6.29 3.60 

MASE 0.34 0.68 0.37 

 

The country considered for this purpose in this study is 

Singapore. The reasons for selecting Singapore for the study 

are that it is one of the most favorite destinations for tourists, 

the economy of Singapore is linked to the earnings from 

tourism and, most importantly, the accurate forecast can help 

in policy making, promotions and planning by government and 

local businesses. 

2. Methodology 

2.1 Data and procedure 

The monthly tourist arrival data is from the Singapore Tourism 

Board (STB) and Ministry of Trade and Industry, Singapore 

websites [26, 27] and is available publicly. Although data were 

available in multi-categories, for this study purposes, we 

obtained the samples from STB which were specific category 

of international tourist arrival [27] in which STB excluded the 

following types of arrivals from the final dataset: 

1. Travelers in Singapore whose length of stay is more than 

one year (if stay is one year of more, then these individuals 

are not treated as tourists, and have a different visa types 

such as work permit or diplomatic etc.) 
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2. All Malaysian citizens arriving by land (are not treated as 

international tourists) 

3. Revisiting and returning Singapore citizens, permanent 

residents and pass holders 

4. Non-resident air and sea crew (excluding sea crew flying-in 

to join a ship at Singapore port) 

5. Air transit as well as transfer passengers in Singapore (not 

treated as international tourists in Singapore) 

The above mentioned monthly data was obtained from 

Singapore Tourist Board for a period January, 2003 to 

December, 2013. 

ARIMA and SARIMA Models 

Box and Jenkins (1970) are the pioneers who developed 

autoregressive integrated moving average (ARIMA) model for 

forecasting. This model still is widely used (Kumar & Anand, 

2014) and many advanced forecasting models were developed 

keeping ARIMA as base model. The only drawbacks of ARIMA 

model are 1) that this model is considered for the stationary 

series, and 2) it is good mostly for annual data. While non-

seasonal time series data can easily be used to forecast using 

ARIMA model, modelling of a seasonal (or high frequency) 

data (such as daily, weekly or monthly) requires a seasonal 

ARIMA model which is formed by introducing additional 

seasonal terms in the ARIMA model (Hyndman & 

Athanasopoulos, 2014). A general ARIMA model of order (p, d, 

q) can be expressed as follows (Pankratz, 1983): 

(1 – ϕ1 B – ϕ1 B2 – … – ϕp Bp) (1 – B)d Yt  = (1 – θ1 B – θ1 B2 – … – θq Bq) et (1) 

Where, d is the order of differencing, Yt is the most current 

value in data series, et stands for a set of uncorrected random 

shocks, and (1 – ϕ1 B –  …  – ϕp Bp) is non-seasonal AR operator 

of order ‘p’ and (1 – θ1 B – … – θq Bq) is non-seasonal MA 

operator of order ‘q’. 

Usually, tourist arrivals often display seasonality behavior (i.e. 

periodic pattern) and are non-stationary time series. The 

seasonal ARIMA (SARIMA) model is capable of absorbing this 

seasonality behavior in the time series and can be written as 

(Pankratz, 1983): 

(1 – βs Bs – βs B2s – … – βPs BPs) (1 – BD) Yt  = (1 – λs Bs – λ2s B2s – … – λQs BQs) et  (2) 

Where B is defined as Br Yt = Yt – r, r = s  

The above process (equation 2) is a SARIMA(p,d,q)(P,D,Q)s 

process, where (p,d,q) indicates the non-seasonal orders of 

AR, Differencing and MA terms, respectively, and (P,D,Q)s 

indicate the seasonal orders of the seasonal AR, Differencing 

and MA terms, respectively (Chan et al, 2009). The (P,D,Q) 

invokes backshifts in the seasonal periods. All these 

parameters (p, q, d, P, D and Q) are non-negative integers. 

The variable et is commonly referred to as white noise in time 

series analysis (Martinez et al, 2011) and cannot easily be 

explained by the model. Considering our case, the time series 

of monthly tourist arrivals, this white noise (et) can vary, for 

example, due to an effect of weather variables (e.g. extreme 

cold in the west while mild in tropical countries) or a major 

event (e.g. sports, formula one race etc.). 

Unit Root Test and Adequacy of Models 

The unit root test is used to examine whether a time series is 

stationary or non-stationary. When a time series is tested for 

unit root and result confirms the unit root in the series, the 

series is non-stationary. This requires unit root to be removed 

to transform the non-stationary series into stationary, which is 

obtained by differencing the series by either first order (i.e. 

order of differencing, d = 1) or higher order (i.e. d > 1). Care is 

to be taken to avoid unnecessary over differencing, which 

would lead to increase in the standard deviation (Kumar & 

Anand, 2014). The Augmented Dickey–Fuller (ADF) test (Dickey 

& Fuller, 1979) and Kwiatkowski-Phillips-Schmidt-Shin (KPSS) 

test for unit root were used in this study to test the unit root 

problems. The ADF test is most commonly used unit root test 

in forecasting (Chen et al, 2009). ADF test can be represented 

by following regression equation (Hyndman & 

Athanasopoulos, 2014): 

Y′
t = ϕ Yt-1 + β1 Y′

t-1 + β2 Y′
t-2 + … + βk Y′

t-k 

Where, Y′
t denotes the first-differenced series (i.e. Y′

t = Yt - Yt-

1), k is the number of in the regression. 

In this paper, following the ARIMA model for forecasting as 

suggested by Box and Jenkins (Box and Jenkins, 1970), and 

Kumar and Anand (Kumar & Anand, 2014), seasonal ARIMA 

models were constructed and fitted to the tourist arrival time 

series data to accommodate the characteristic of seasonality 

as discussed earlier. The adequacy of the each model was, 

first, visually verified by plots of the histogram, an 

autocorrelation function (ACF) plot and Partial an 

autocorrelation function (PACF) plot of the standardized 

residuals, followed by the Ljung-Box test (Ljung & Box, 1978) 

for correlation across a specified number of time lags. To 

compare the goodness-of-fit of the models, the Akaike 

information criterion (AIC) and Bayesian information criterion 

(BIC) were employed. A lower AIC and/or BIC values indicate 

better fit of model (Burnham & Anderson, 2002). 

3. Results and Discussions 

The monthly data obtained is first plotted to observe the 

patterns in the time series. Figure 1 and Figure 2 show the 

monthly and yearly tourist arrivals in Singapore. It can 

primarily be inferred from the figures that the time series is 

non-stationary with seasonality.  
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Figure 1 - Monthly pattern of tourist arrivals in Singapore (Jan, 2003 to Dec, 2013) 

 
Source: Singapore Tourism Board and Department of Statistics, Singapore. 

 

Figure 2 - Yearly pattern of total tourist arrivals in Singapore (2003 to 2013) 

 
Source: Singapore Tourism Board and Department of Statistics, Singapore. 

 

For better review, the time series is then decomposed to 

separate the three components (i.e. trend, seasonal and an 

irregular component) that a seasonal time series consists of. 

Figure 3 shows plots of these components.  

 
Figure 3 - Decomposed plot of time series 
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First (top) plot in Figure 3 is the original observed plot, second 

from top is estimated trend in the tourist arrivals, third plot 

from top is estimated seasonal factors and bottom plot is the 

estimated irregular component in the series. The estimated 

largest seasonal factor value is for July month (94835.48) while 

the lowest factor value is for January (-1592.79). One of the 

possible reasons for this could be the weather conditions (such 

as Monsoon in July). Finding these causal relations is beyond 

the scope of this study. Also it is observe in the estimated 

trend in figure 3 that there is slight dip in tourist arrivals during 

2009-10 which may be due to world financial crisis during that 

period. Otherwise, overall, there is an increasing trend in 

tourist arrivals.  

Non-Seasonal Unit Root Test 

We first test whether there is a unit root in the non-seasonal 

data (i.e. yearly data) or not. For that, we applied Augmented 

Dickey-Fuller (ADF) Test with three standard scenarios i.e. 1) 

No intercept (constant) and No Trend, 2) Intercept but No 

Trend; and 3) Intercept and Trend. Table 2 below shows the 

ADF results. 

 

Table 2 - Augmented Dickey–Fuller Test 

 Test Statistics Z(t) 1% Critical Value 5% Critical Value 10% Critical Value 

Case A (No Constant / No Trend) 0.7758 -2.56 -1.94 -1.62 

Case B (With Constant / No Trend) -1.1788 -3.43 -2.86 -2.57 

Case C (With Constant & Trend) -3.9796 -3.96 -3.41 -3.13 

 

We fail to reject null hypothesis because there seems to be a 

unit root existence in the data, as evident from the ADF test 

result (in Table 2) for Case A (with no intercept and no trend) 

and the t-statistics (0.7758) is significantly even larger than 

critical value (-1.62) at 10 per cent level. Same is the result in 

the Case B as well (even for different lag length up to 18). But 

when a trend is included, Case C, we get a very different result. 

T-statistics we observed in this case is found to be -3.9796, 

which is significantly smaller than all the three critical values in 

the table 1 above (i.e. critical values at 1, 5 and 10 per cent). 

We, therefore, failed to accept null hypothesis and infer the 

stationarity in the series. This result was for the highest lag 

difference length and remained unchanged for all other. 

We then, alternatively, applied Kwiatkowski-Phillips-Schmidt-

Shin (KPSS) test which has null hypothesis that the series is 

(level or trend) stationary whereas alternate hypothesis 

confirms the unit root in the series.  

Following Table 3 shows the KPSS test results for various lag 

lengths.

 

Table 3. KPSS Test 

Level Stationarity 

Lag = 0 1 2 3 4 6 12 18 

T-statistics 0 5.4246 3.7339 2.8626 2.3289 1.7186 1.0128 0.7533 

1% Critical Value 0.739 
      

5% Critical Value 0.463 
      

10% Critical Value 0.347 
      

Trend Stationarity 

lag = 0 1 2 3 4 6 12 18 

T-statistics 0 0.4848 0.3846 0.3262 0.2824 0.2239 0.1456 0.117 

1% Critical Value 0.216 
      

5% Critical Value 0.146 
      

10% Critical Value 0.119             

 

The test statistics for level and trend stationarity are larger 

than critical values at 5 per cent (for lag up to 12). We have no 

evidence that it is not trend stationary. We, therefore, fail to 

reject the null hypothesis at the 5 per cent level. Which means 

the series is not stationary in trend i.e. series has time trend 

with stationary errors. But for higher lags, we fail to accept the 

null hypothesis at 5 per cent level. Also, at 1 per cent level, we 

fail to accept null hypothesis because test statistics values (for 

trend stationarity and lag > 8) are smaller than critical values 

for out monthly time series data. These results are in line with 

the results obtained in the ADF test earlier. 

Since ADF test results in Table 2 and KPSS test result in Table 3 

suggests that differencing is required, first, the time series is 

transformed into a new logged series by taking logarithms (to 

the base 10) of the data exhibited in Figure 1 to induce 

constant variance in the series. Then this transformed series is 

further transformed into a differenced series of first order. The 

plot of this logged first differenced series is shown in Figure 4. 

The transformed series seems to be fluctuating about a 

constant mean (of 0.003) which is very close to zero mean. 

Therefore, the order of non-seasonal differencing can be 

considered to be d = 1. There is no need to go for second order 

differencing in the series as this process would increase the 

variance in the series. 
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Figure 4 - First difference plot of logged series 

 

 

Table 4 represents the HEGY test (Hylleberg et al, 1990) results 

for the unit root test for transformed (first difference of 

logged) series. Two types of deterministic models were used, 

one with no intercept, no linear trend and without seasonal 

dummies, and another model with an intercept, a linear trend 

with seasonal dummies. Also, the test uses BIC methods to 

select lag orders to test unit root in the data (Franses, 1990, 

and, Beaulieu and Miron, 1993). 
 

Table 4 - HEGY Test Results 

 
t(π)1 t(π)2 F(π)3-4 F(π)5-6 F(π)7-8 F(π)9-10 F(π)11-12 F(π)2-12 F(π)1-12 

t-stat* 1.482 -1.773 0.115^ 0.774^ 0.965^ 0.062^ 2.579^ 1.174^ 1.328^ 

t-stat# -2.133ǝ -2.575ǝ 5.332ǝ 6.659 0.118ǝ 4.971ǝ 5.407ǝ 4.944 4.763 

1%CV -3.91 -3.34 8.38 8.55 8.39 8.5 8.75 5.15 5.34 

5%CV -3.35 -2.81 6.35 6.48 6.3 6.4 6.46 4.44 4.58 

10%CV -3.08 -2.51 5.45 5.46 5.33 5.47 5.36 4.07 4.26 

* No intercept, no linear trend and without seasonal dummies.  
# With an intercept, a linear trend with seasonal dummies. 
^ Significant at 5 per cent level. 
ǝ Significant at 5 per cent level. 

 

HEGY test statistics infer that at 5 per cent level series is 

stationary (both at seasonal and non-seasonal frequencies). 

Therefore, based on the HEGY test results above, we can 

confirm the values of D as 1 or first order seasonal 

differencing.  

Below Figure 5 and 6 shows the residuals’ time series, auto-

correlation plot (ACF) and partial auto-correlation plot (PACF) 

of HEGY residuals. 

Figure 5 - Time series plot of HEGY Residuals of transformed series 
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Figure 6: ACF and PACF of HEGY Residuals of transformed series 

 
 

Further, in Figure 7 below, we show the plot of autocorrelation 

function (ACF) and partial autocorrelation function (PACF) of 

the transformed time series. It can be observed that ACF series 

exhibits periodicity at lag = 12 meaning a seasonal MA(1) 

component, confirmed by PACF as well. Also significant 

autocorrelation spike at lag 1 indicates a non-seasonal MA(1) 

component in the series. 

 
Figure 7 - ACF and PACF of transformed series 

 
 

This results into an initial seasonal ARIMA(0,1,1)(0,1,1)12 model 

with the order of differencing of 1 and seasonal and non-

seasonal MA orders of Q=1 and q=1, respectively. This SARIMA 

model is then fitted to the time series data for further 

exploration. Figure 8 shows the plot, ACF and PACF of this 

fitted model. It is clearly evident from ACF plot that the 

autocorrelation spike at lag 2 and 3 are outside of significance 

bounds and then it slowly tails off to zero. This means there 

may be higher orders (p) of non-seasonal AR terms in the 

model. Therefore, more models needed to be considered with 

non-seasonal AR orders (p) of 1, 2 and 3.  

 

Figure 8 - ACF and PACF of residuals of fitted ARIMA (0,1,1)(0,1,1)12 model 
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Further, from PACF plot in Figure 8, we observe that the partial 

autocorrelation after lag 3 tails off to zero, suggesting us that 

the non-seasonal AR order (p) maximum can be 3 and since at 

lag 1, spike is within significant bound, the minimum order can 

also be zero. All the suggested possible Seasonal 

ARIMA(p,d,q)(P,D,Q)s models (including zero differencing 

order) are shown in the Table 5. 

 

Table 5 - Suggested Seasonal ARIMA Models 

ARIMA(0,1,1)(0,1,1)12 ARIMA(1,1,1)(0,1,1)12 ARIMA(2,1,1)(0,1,1)12 

ARIMA(3,1,1)(0,1,1)12 ARIMA(0,1,1)(1,1,1)12 ARIMA(1,1,1)(1,1,1)12 

ARIMA(2,1,1)(1,1,1)12 ARIMA(3,1,1)(1,1,1)12 ARIMA(0,1,0)(0,1,0)12 

ARIMA(1,0,0)(0,1,0)12 ARIMA(0,0,1)(0,1,0)12 ARIMA(1,0,1)(1,1,0)12 

 

For seasonal difference order D=0, the convergence problem 

was faced, therefore, the ARIMA(1,0,0)(0,0,1)12 model was 

removed from the considerations. Consequently, to select the 

best SARIMA model for forecasting from the above suggested 

models, the lowest values in errors (AIC, BIC and/or AICc) are 

considered. Further, Ljung-Box test be employed to test the 

residuals for autocorrelations.  

The computed values of the mean errors (ME), root mean 

square errors (RMSE), mean absolute errors (MAE), mean 

absolute percentage errors (MAPE), mean absolute square 

errors (MASE), Akaike’s information criterion (AIC), Bayesian 

information criterion (BIC) and  corrected AIC (AICc) errors 

(Hyndman & Athanasopoulos, 2014) for each of the suggested 

models are tabulated in Table 6 below. 

  

Table 6 - Calculated Errors for each of the Suggested Models 

Model ME RMSE MAE MPE MAPE MASE AIC BIC AICc 

ARIMA(1,1,1)(0,1,1)12 299.0 52907.8 33593.5 -0.1 3.8 0.2 2949.7 2960.8 2950.1 

ARIMA(1,1,1)(1,1,1)12 331.5 51882.2 33117.9 -0.1 3.8 0.2 2949.5 2953.4 2950.1 

ARIMA(1,0,0)(0,1,0)12 8691.3 54361.5 34534.1 1.0 3.9 0.2 2974.3 2979.9 2974.4 

ARIMA(0,0,1)(0,1,0)12 40014.9 77030.8 56324.0 4.3 6.3 0.3 3057.4 3063.0 3057.5 

ARIMA(0,1,0)(0,1,0)12 -34.0 55971.8 35002.8 0.0 4.0 0.2 2954.0 2956.8 2954.0 

ARIMA(0,1,1)(0,1,1)12 216.5 55353.4 35120.5 0.0 4.0 0.2 2955.9 2964.2 2956.1 

ARIMA(0,1,1)(1,1,1)12 503.3 54391.4 35060.4 0.1 4.0 0.2 2955.7 2966.8 2956.0 

ARIMA(2,1,1)(0,1,1)12 -126.2 52713.6 33841.3 -0.1 3.9 0.2 2950.9 2964.8 2951.4 

ARIMA(2,1,1)(1,1,1)12 -230.9 51387.5 33311.4 -0.2 3.8 0.2 2950.1 2966.8 2950.9 

ARIMA(3,1,1)(0,1,1)12 -386.9 52967.6 34441.9 -0.1 3.9 0.2 2951.9 2968.6 2952.7 

ARIMA(3,1,1)(1,1,1)12 518.3 54016.0 34536.4 0.1 3.9 0.2 2959.9 2979.4 2960.9 

ARIMA(1,0,1)(1,1,0)12 772.4 52781.4 33392.6 0.0 3.8 0.2 2676.7 2690.6 2677.2 

 

Although, in the above table that the lowest values for ME, 

RMSE, MAE and MPE are for different models, the lowest 

computed values of AIC, BIC and AICc are for the seasonal 

ARIMA(1,0,1)(1,1,0)12 model. Therefore, we select this model 

as the best-fit model. The mathematical model for the 

seasonal ARIMA(1,0,1)(1,1,0)12 can be represented by: 

(1 – Ø1 B) (1 – ɸ1 B12) (1 – B12) Yt = μ + (1 + θ1 B) Ɛt 

Following Table 7 below represents the estimated coefficients 

of chosen Seasonal ARIMA model: 

Table 7 - Coefficients from ARIMA(1,0,1)(1,1,0)12 

 
AR (p) MA (q) SAR (P) Constant 

  0.78 0.11 -0.12 6179.16 

S.E. → 0.08 0.12 0.13 1908.23 

 

And in the Table 8 below, the monthly forecast were made for 

24 months in future using the chosen model and obtained 

coefficients (from Table 7): 

 

 

 

 



Kumar, M. & Sharma, S. (2016). Tourism & Management Studies, 12(1), 107-119 

115 
 

Table 8 - Monthly Forecast of Tourist Arrivals in Singapore using chosen Model 

Month 2014 2015 Month 2014 2015 

Jan 1302938 1306333 Jul 1414653 1417353 

Feb 1230711 1233756 Aug 1473590 1476574 

Mar 1371680 1374958 Sep 1170126 1172452 

Apr 1280918 1283337 Oct 1209312 1210164 

May 1285433 1288509 Nov 1193072 1193362 

Jun 1285825 1288610 Dec 1371910 1372547 

 

Further, to analyze the model adequacy, we will now look at 

residuals of the fitted model and forecast. Following Figure 9 

shows the ACF, PACF and plot of residuals of the fitted model. 

It can easily be inferred that these are white noise and all of 

the residuals at various lags are well within 5 per cent 

significance levels. Therefore, we can assume that there are no 

auto-correlations existing in the residuals of that model. 

 

Figure 9 - ACF and PACF plots of Residuals for different lags in the fitted model 

 

 

To confirm the assumption, we will apply Ljung-Box and Box-

Pierce tests for independence. These test results are shown in 

the table 8 below. Clearly we can infer from the large p-values 

of results from both tests for various lags that errors are white 

and are not auto-correlated. 

Table 8 - Tests of Independence for ARIMA(1,0,1)(1,1,0)12 

Test χ2 DF p-value Result 

Ljung-Box 23.9429 24 0.4649 Pass 

Ljung-Box 23.9429 28 0.6845 Pass 

Ljung-Box 23.9429 36 0.9381 Pass 

Box-Pierce 19.2706 24 0.7374 Pass 

Box-Pierce 19.2706 28 0.8896 Pass 

Box-Pierce 19.2706 36 0.9898 Pass 

 

In the above table 8 we have shown only three results from 

each of the tests. A broader picture of the Ljung-Box test 

statistics is shown in the Figure 10 below. This figure 

represents the plot of p-values obtained from the Ljung-Box 

test for the different lags for the fitted model. Clearly, it can be 

confirmed that none of the p-values is equal or less than 0.05 

(significance level). Hence it can be inferred that errors in the 

model are white and are not auto-correlated. 
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Figure 10 - Plot of p-values in Ljung-Box Test for various lags 

 
 

In other words, the high p-values associated with the Ljung-

Box statistics confirm that we cannot reject the null hypothesis 

of independence in this residual series. Thus, we can say that 

the SARIMA (1,0,1)(1,1,0)12 model fits the data well. Further, in 

Figure 11 (the histograms and normal distribution) and in 

Figure 12 (the QQ plot of normality), the error term Ɛt in the 

fitted model clearly seems to follow normal distribution 

(baring one outlier as is visible in QQ plot) of the sample.

 

Figure 11 - Histogram of Residuals in the Fitted ARIMA(1,0,1)(1,1,0)12 Model 

 
We observe in Figure 12 that except a few circles at the tails, 

all the circles lie quite close to the line, and hence we can say 

these data come from a normal distribution. These results as 

above are in strong support that the model chosen, i.e. 

ARIMA(1,0,1)(1,1,0)12, can be considered as the right model to 

fit and the forecast values obtained using this model are 

strong predictions with zero auto-correlated errors. 

 

Figure 12 - Q – Q Plot of Residuals in the Fitted ARIMA(1,0,1)(1,1,0)12 Model 

 
With strong evidences that the model is adequate for 

forecasting, we then obtain the plot of the fitted model versus 

observed time series. The plot is shown in the Figure 13 below. 

Also shown on the chart are the upper control limit (UCL) and 

the lower control limit (LCL) at 5 per cent level.  
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Figure 13 - Plot of fitted vs. observed time series 

 
In Figure 14 we show the forecast (with 80 and 95 per cent 

confidence level) up to 24 months in future using the selected 

model and these forecast values are shown in the Table 9 

below. 

 
Figure 14 - Forecasting with 80 per cent and 95 per cent confidence levels 

 

Table 9 - Prediction (Point, Lower & Upper) at various Confidence Level 

Month and 
Year 

Model 
Prediction 

80%CL 90%CL 95% CL 99% CL 

Lower Upper Lower Upper Lower Upper Lower Upper 

Jan-2014 1302938 1230267 1375609 1209666 1396211 1191798 1414079 1156875 1449002 

Feb-2014 1230711 1131534 1329888 1103418 1358004 1079032 1382390 1031372 1430051 

Mar-2014 1371680 1256081 1487279 1223310 1520050 1194886 1548474 1139334 1604027 

Apr-2014 1280918 1154055 1407781 1118091 1443745 1086898 1474938 1025932 1535904 

May-2014 1285433 1150493 1420374 1112239 1458627 1079060 1491807 1014213 1556654 

Jun-2014 1285825 1144948 1426702 1105011 1466639 1070372 1501278 1002672 1568978 

Jul-2014 1414653 1269345 1559960 1228153 1601152 1192424 1636881 1122595 1706710 

Aug-2014 1473590 1324943 1622236 1282803 1664376 1246254 1700925 1174819 1772360 

Sep-2014 1170126 1018943 1321308 976085 1364166 938912 1401339 866260 1473991 

Oct-2014 1209312 1056195 1362429 1012789 1405835 975140 1443484 901558 1517066 

Nov-2014 1193072 1038474 1347669 994648 1391496 956635 1429508 882341 1503802 

Dec-2014 1371910 1216175 1527644 1172026 1571793 1133734 1610085 1058893 1684926 

Jan-2015 1306333 1130700 1481966 1080910 1531756 1037725 1574941 953323 1659343 

Feb-2015 1233756 1042934 1424579 988838 1478674 941919 1525594 850217 1617296 

Mar-2015 1374958 1173158 1576758 1115951 1633965 1066332 1683584 969354 1780562 

Apr-2015 1283337 1073431 1493243 1013926 1552749 962314 1604361 861441 1705233 

May-2015 1288509 1072535 1504482 1011310 1565708 958206 1618812 854417 1722600 

Jun-2015 1288610 1068053 1509167 1005528 1571692 951297 1625923 845306 1731915 

Jul-2015 1417353 1193311 1641395 1129798 1704908 1074710 1759996 967044 1867662 

Aug-2015 1476574 1249871 1703278 1185603 1767545 1129861 1823287 1020916 1932232 

Sep-2015 1172452 943709 1401195 878864 1466041 822620 1522284 712695 1632210 

Oct-2015 1210164 979854 1440474 914564 1505763 857935 1562392 747257 1673070 

Nov-2015 1193362 961846 1424878 896214 1490509 839289 1547435 728031 1658692 

Dec-2015 1372547 1140102 1604993 1074207 1670888 1017053 1728042 905349 1839746 
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4. Conclusion 

In this study, Singapore was chosen as a case for tourist inflow 

forecasting in South East Asia for the main reason that it does 

not have natural resources to support its economy and hence 

greatly depends upon foreign tourists not only for foreign 

exchange earnings but also for business exports. We collected 

ten years’ monthly time series data of tourist arrivals in 

Singapore between 2003 and 2013 from secondary sources 

(mainly Singapore’s government websites). The time series 

data was initially tested for unit root problems and further 

testing were done to arrive on to the best model for 

forecasting. Seasonal auto-regressive integrated moving 

average (SARIMA) methodology was adopted for forecasting 

(as it was found outperforming on accuracy levels as compare 

to the ARIMA and Holt Winters models) and the best model for 

fitting is found out to be of (1,0,1)(0,1,1)12 order. This model 

was further tested for adequacy i.e. white errors (free from 

auto-correlation) and upon confirmation on adequacy, the 

model was used to make forecasting of monthly tourist inflow 

(arrivals) for the two years in future. The chosen model passed 

the major diagnostic statistical tests and showed high accuracy 

performance in modelling the data. The forecasts were made 

at various confidence levels (e.g. 80 per cent, 95 per cent etc.). 

This paper contributes to the literature on forecasting tourist 

arrivals in several ways. Firstly, the accurate model selection 

critical to reliable forecast to use and plan various operational 

activities by tourism industry businesses in Singapore. 

Secondly, model reliability was tested for various statistical 

analysis so that robustness of prediction could be obtained. 

Also, the forecasting errors were seen minimum as compare to 

other models, making it more reliable. We also attempted to 

provide tentative answers to some major policy questions such 

as what is forecast of arrival of tourists vis a vis the current 

trends? What will be the relative growth in arrivals in 

Singapore? Can the prediction be used as a tool for planning at 

Destination Marketing Organization (DMO) and if yes with 

what confidence level? Future directions of the work can me 

to elaborate the major impacts of forecasting with high 

accuracy for scholars, managers and policy makers in tourism. 

According to Baggio & Klobas (2011) a Mean Absolute 

Percentage Error (MAPE) less than 10% shows a highly 

accurate forecasting performance of the model. MAPE of our 

model is 3.8%, yet a little improvement in forecasting 

accuracy could lead to large amount of savings in tourism 

industry. This statistically proven prediction may be used for 

better planning of tourism related businesses, DMOs and 

exporters. However there are scopes for further 

improvements in the forecast by using advanced techniques 

such as Singular Spectrum Analysis (SSA). In a recent study by 

Hassani et. al. (2014) found that SSA outperformed ARIMA in 

forecasting U.S. Tourist arrivals by country of origin. 

Therefore, the directions for future studies on this data can 

be forecasting (using models such as SSA, Vector SSA model 

or feed-forward Neural Network etc.) tourist arrivals from its 

most important foreign source markets.  
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