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Abstract 

An algorithm is presented for the calculation of corrosion parameters with mixed 
charge-transfer and diffusion control, based on the polynomial method, and having good 
accuracy and precision.. 
 
Keywords: polynomial method; mixed-control; corrosion parameters; electrokinetic 
parameters. 

 

 
Introduction 
Several algebraic and computational methods have been developed [2-12] for the 
calculation of corrosion parameters derived from the Wagner-Traud [1] equation 
for a corrosion system controlled by charge transfer. Nevertheless, the case of 
mixed charge transfer and diffusion control has been little studied. The most 
important equations related to this situation are those of Nagy [13], for describing 
the cathodic diffusion reaction, and the El-Fecki [14] equation related to the 
anodic and cathodic reactions. The polynomial method has been used for 
calculating corrosion and electro kinetic parameters [11, 15] in systems 
controlled only by charge transfer. 
The goal of the present study is to apply the polynomial method to resolve the 
corrosion parameters in a system with mixed control of charge transfer and 
diffusion of the cathodic reaction. 

 
Experimental  
The effect of mass transport in the determination of corrosion parameters 
obtained from polarization data is given by the equation of mixed polarization 
control obtained by Nagy [13] 
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where, i = current density, ic = density of corrosion current, iL =density of limiting 
cathodic current, ε =  polarization, ba = anodic Tafel slope, and bc = cathodic 
Tafel slope. This general equation describes the polarization curve for the case in 
which the cathodic reaction is under the control of mass transfer (ic = iL), mixed 
control (iL > ic), and control of charge transfer (iL = ∞). In the following, for 
simplicity, we use ic/iL ≡ r. 
Equation (1) can be developed according to the Maclaurins series, following 
which, and ordering the terms, we obtain: 
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If we divide by ε  the preceding equation is transformed to: 
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Equation (3) is a polynomial, and may be simplified to: 
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where A, B, C, D are known constants for a given system, equal to: 
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To obtain the corrosion parameters ic, r, ba, and bc from the Nagy equation, even 
though there are four equations and four unknowns, since these equations are not 
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linear, it was necessary to employ a mathematical program, which, in the present 
case, was maple18 .  

 
 

Results and discussion  
Test method artificial data   
In order to test the methodology we generated artificial data on polarization. 
Table 1, with four significant figures, provides the corrosion density, r and Tafel 
constants for Equation 1. Using the Polynomial method, and with the help of the 
mathematical program above cited, parameters for this initial equation are 
calculated: 

 
Table 1. Generation of artificial polarization data of equation 1. 

Data ic = 100.0 mA cm-2, r = 0.2000, ba= 90.00 mV,  
and bc = 180.0 mV 

Overtension 
± ε (mV) 

Current density 
± i (µA cm-2) 

5 18.67 -17.22 
10 39.00 -33.20 
15 61.25 -48.11 
20 85.72 -62.09 
25 112.74 -75.29 
30 142.7 -87.81 

 
Through polynomial regression of i/ε versus ε,  we obtain the polynomial 
equation:  
   

         ....... +ε+ε+ε+=
ε

−−− 36242 1083411080221088025823
i

             (9) 

 
There is a correlation coefficient of R2=1.000, the graphic representation of 
which is shown in Fig. 1. 
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Figure 1. Representation of the polynomial equation. 

 
Taking the constants from the preceding polynomial, we obtain four equations:  
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Using the non-iterative maple18 mathematical program, the results are: ic = 100.0 
mA/cm2; ba = 90.00 mV; bc = 180.0 mV y r = 0.2000. These results suggest that 
the solution of the equation is adequate, since they are the same as the initial ones 
(Table 1), and therefore, the polynomial method resolves the mixed control 
equation (Equation 1). 
 
Testing the method with experimental data 
With the purpose of testing the method with experimental data, the data obtained 
by LeRoy [16] for the polarization of Zn electrode in a solution of ZnSO4 3% at 
30 °C were chosen, as shown in Table 2. 
 

Table 2. Experimental polarization for Zn in ZnSO4 solution 3%. 

Overtension 
± ε  (mV) 

Current density 
± i (µA cm-2) 

5 21.2 -15.2 
10 50.2 -25.3 
15 102.6 -32.8 
20 191.0 -39.0 
-25 - -43.9 
-30 - -47.6 

 
Through polynomial regression of i/ε versus ε,  we obtain the polynomial 
equation:    
 

574634231 1029110647104211050210131533 ε+ε+ε+ε+ε+=
ε

−−−−− ......
i     (14) 

with a correlation coefficient of R2=1.000, the graphic representation of which is 
shown in Fig. 2. 
Taking the constants from the preceding polynomial, we obtain four equations:  
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Figure 2. Representation of the experimental data of the polynomial equation. 

                           
The results of corrosion parameters in the mixed system obtained using the non-
iterative maple18 mathematical program, are shown in Table 3. 
 

Table 3. Maximum and minimum parameters corrosion. 

Parameters Maximum Minimum 

ic, µA cm-2 51.558 51.254 

ba ,mV 34.681 34.673 

bc, mV 1.12 x103 0.920 x103 

r 0.0703 0.0581 

IL, µA cm-2 790.3 882.2 

 
Parameters results show high sensitivity, whose extreme values are very similar, 
as shown in Figs. 4-7. The very large cathodic Tafel slope indicates that the 
control is mixed. The anodic Tafel slope is the normally found for this system; 
the process controlled by activation is approximately 30 mV. The cathodic Tafel 
slope is very large, due to the reduction of oxygen, which is limited by the 
diffusion of oxygen. 
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This same system, using the polynomial calculation method for a corrosion 
system controlled by charge transfer [11], has delivery values for ic 51.5 µA cm-2, 
ba 34.7 mV and bc 1.02 103 mV; this is a high value, which also indicates that 
there is mixed charge-transfer and diffusion control.  
 
 
Conclusions  
It can be concluded that the non-iterative polynomial method, which is able to 
employ data obtained either by potentiostatic or galvanostatic techniques, can 
also be used for the calculation of corrosion parameters in mixed-charge transfer 
and diffusion control with high precision and accuracy. 
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